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CHAPTER ONEe*

INTRODUCTION

1.1I PROBLEM DEFINITIONa

An underwater acoustic array is a specific spatial arrangement of "f

% 'A
p./.

a set of transducer elements. It can be used as either a transmitter

or a receiver. Each of these modes of operation places certain re-

quirements on the performance of the array. The degree to which these

requirements are met determines the effectiveness and usefulness of

the array.

The directional characteristics of such an array are controlled b

by the shading values at each position in the array. These shading

values, or weights, are developed under the assumption that all the

elements have identical performance characteristics, expressed in

terms of amplitude, (or gain), and phase over a broad frequency range.

The variations found in actual elements refute this assumption.

.% ,..

The introduction of element errors degrades the performance character-

istics of the array. Because of this, the side-lobe levels may de-

viate significantly from the design specifications.

The amplitude and phase characteristics of the response from each

element are also influenced by the element's location within the

array. This positional dependence results from the acoustic inter-

action with all the other elements in the array. . '.

,. .
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A reasonably effective two part method of reducing the amount of •

error introduced into the response pattern by elements with different

tolerances was developed by Kendig [I]. Some of this method's draw-

backs have been solved by Schafer [2]. In addition, Schafer has de-

veloped a computer version of this method.

Originally, the first part of the Kendig method used indirect

measurements of frequency and capacitance to estimate the amplitude 0

and phase errors of each element. The second part of the Kendig

method determined the placement of elements in the array. The Kendig

Scatter Diagram Method involves the pairing of elements in a manner

that partially cancels out their respective errors. With the develop-

ment of an in-air current/velocity measurement technique, Schafer [2]

was able to use a lumped-parameter equivalent circuit to predict more

accurately the amplitude and phase characteristics of a tonpilz trans-

ducer that is subjected to an arbitrary radiation loading. Since the

mutual interactions will manifest themselves as changes in radiation

loading, the positional dependence can be accounted for.

The success of Permutation Search in solving similar problems

known as Travelling Salesman Problems indicates it may be an effec-

tive tool for determining array positions for transducer elements. It

is a straighforward and effective search technique. For the problem

of element placement, it rearranges the elements in the array, search- 40

ing for those permutations which improve upon the response of the cur- 0

rent array.
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1.2 GOALS OF THIS STUDY

The goal of this thesis is to develop an algorithm which deter-

mines the placement of elements in an array so that the impact of the

transducer element errors on the array response is minimized. This

technique must be applicable to all four-fold symmetric arrays, odd and

even. To accomplish this goal, several objectives must be met:

1. Analyze the effects of tolerances in the lumped-parameter cir-

cuit values on an element's performance characteristics.

2. Study the effects of mutual interaction between elements and

the effect of incidence angle on the mutual interaction.

3. Adapt the Permutation Search algorithm to the problem of ele-

ment placement, and determine its effectiveness.

4. Enhance the Kendig Scatter Diagram Method by using a three di-

mensional model of array response.

5. Determine the effectiveness of using the Neo-Kendig selection

scheme as a starting point for the Permutation Search algor-

ithm.

The lumped-parameter equivalent circuit and a study of the effects

of parameter tolerances is presented in Chapter Two. In Chapter Three %
.

is a discussion of the effect of the acoustic coupling between elements V1

on an element's performance. Chapter Four is a presentation of Permu-

tation Search and a discussion of its results. The derivation of
U--

-Py
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the Neo-Kendig method is in Chapter Five. The results of combining the
S

Neo-Kendig method and Permutation Search are presented in Chapter Six.
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CHAPTER TWO

0
THE TRANSDUCER ELEMENTS

2.1 THE EQUIVALENT CIRCUIT*
p

In order to study the response characteristics of a tonpilz trans- f

ducer, (shown in Figure 2.1), an equivalent electrical circuit is often

used. The two types of equivalent circuits used are distributed-

parameter and lumped-parameter. The distributed-parameter is used pri-

marily during the design of a transducer. This study uses the lumped-

parameter model because the circuit parameters can be determined from 0

the measurement of transducer elements. In this manner, the element

tolerances can be accounted for as variations in the circuit parame-

ters. 0

With the lumped-parameter model, the performance of a tonpilz

transducer operated in the vicinity of its fundamental resonance can be

readily predicted. In this circuit, the mechanical properties of the 0

transducer, mass and compliance, are represented by linear electrical .%

parameters, inductance and capacitance. Mechanical resistance is di-

rectly analogous to electrical resistance. This circuit is valid only

in the vicinity of the fundamental resonance of the transducer.

The input/output relationships for a transducer element are deter-

mined by an analysis of the equivalent circuit. Shown in Figure 2.2

is the lumped-parameter equivalent circuit. For the receive case, the

output voltage sensitivity, Me, for a transducer is given by

0

* The material in this section is a synopsis of Reference [2].

%I
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8N
E out (2-1)

in

where Eout is the open circuit output voltage for an incident sound pres-

sure Pin. From the equivalent circuit, it can be shown that

IMe k = 2 2o(-+SRA1
S 2 2 2 2 22 2 21 /2 (2-2)

[ _ CoM + Co/CM WCoS2XA) +W C(RM+SR

Arg(M- C(RM + S2 RA)
ek 2 . (2-3) 

Equations 2-2 and 2-3, the input/output relationships, are used to

determine the amplitude and phase responses of each element. It is seen,

in Equation 2-1, that the magnitude of the open circuit voltage is pro-

portional to both the receive voltage sensitivity and the incident sound

pressure. In other words, the output voltage is proportional to the dis-

placement of the head of the transducer, i.e., amplitude.

Included in the equivalent circuit is the analytically derived com-

plex acoustic radiation impedance, ZA, (= RA + iXA), where the real part,

RA, is the resistance, and the imaginary part, XA, the reactance. The

mechanical impedance experienced by the transducer, ZM, is related to the

acoustic impedance by a factor of I/S2 : ZA ZM/S 2 , where S is the area

of the face of the transducer. In the equivalent circuit, the acoustic

impedance in the acoustic domain is transformed into mechanical impedance

in the mechanical domain by an ideal transformer with a turns ratio of

, S:I.

*.1 *%
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The input/output relationships show that a transducer element will
0

have different responses for different loadings. This complicates the

array design process because an element placed in one position in the

array will not experience the same radiation loading when placed in a

different, nonsymmetric position. This is a result of the acoustic in-

teraction among transducer elements in an array. Each element position

in the array has a set of spatial relationships with all the other ele-

ment positions in the array. Those positions which have the same rela-

tionships with all the other array positions are symmetric positions.

2.1.1 CIRCUIT PARAMETERS

A reduced form of the lumped-parameter circuit, shown in Figure
L'S

2.3 is used to determine the circuit parameters for each element. The

relationships between the two circuits are shown below. 'S

Co = Co  C = CM02  L = HM/ 2  R = RM/o 2 . (2-4)

In the reduced form, dielectric losses, Ro, are assumed negligible.

Since the measurements are made in air, the radiation impedance is also

assumed negligible. By measuring Fy, the motional resonance frequency;

Fl and F2, the half-power frequencies; Ct, the total capacitance; and

Gy. the conductance at F =Fy the circuit parameters of the reduced

model are given by

R = 1/Gy C = Gy ( 2 - wl)/w, 2

L = 1/(C'wy2) Co = Ct - C, (2-5)

where w = 2nF. The transformation ratio, (D, represents the coupling

between the mechanical and electrical domains of the equivalent circuit.

-5
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Since it has the units of current/velocity it can be determined by the

simultaneous measurement of both these quantities. A more detailed

discussion of this procedure and the procedures for determining the

other parameters is discussed in Reference [2]. The six measured para-

meters, Fy, F , F , Gy, Ct, and D, are all that are needed to predict a

transducer element's performance for an arbitrary radiation loading.

2.1.2 A MEASURED SET

In order to simulate realistic sets of elements to test the se- ,.

lection process, the relationships, if any, among the measured circuit

parameters had to be determined. A set of 66 tonpilz transducers were

constructed and measured. Correlations and distributions in measured

data were tested by plotting each parameter versus every other parame-
S

ter. In all the following plots, the parameter values have been nor-

malized to the mean values of the measured set.

There is a linear correlation between Fy and both F1 and F2 , shown %
yS

in Figures 2.4 and 2.5, respectively. There is also a linear correla-

tion between F1 and F2 , as seen in Figure 2.6. However, there is no eV

correlation between Fy, and F 2 - F1 , as seen in Figure 2.7. Neither is
0

there a correlation between F1 or F2 and F2 - F1 . It was determined

that

F2 = Fy + (F2 - Fj)/2

Fi = Fy - (F2 - FI)/2 (2-6)

is a good representation of the relationships between Fy, F1  and F 2 ,

(within .01%).

= . . . . . . . . . .-, -,- - -. , " - %I''% ". - . * % ' %%. 4 *J%. % % %
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A correlation was found between G and F2 - F1 , (Figure 2.8).

Equation 2-5, rewritten below, (Equation 2-7), shows that F2 - F1 is

inversely proportional to Gy,

W2 - wi = C * Wy2/Gy. (2-7)

The two curves shown in Figure 2.8 represent the least squares fit to V.

the data and a linear approximatior to this curve. The equation for

the least sqaures fit is,

F2 - F 1 = .5415/Gy + .4402 (2-8)

and the linear approximation is, S

F 2 - F1 = -.627 * G + 1.627. (2-9)

This relationship is shown in Figure 2.9, a plot of conductance, G,

versus frequency. As the value of G at resonance, Gy, increases, the

reson' j)p -ak becomes narrower. Therefore, an increase in Gy produces N.

a de, se in F 2 - Fl. 0

These plots, along with Figures 2.10 and 2.11, have shown that Gy,

Fy, and Ct have approximately Gaussian distributions. Additionally, it

is seen that 4) has a random distribution. This is not surprising sinceOS

(D represents the coupling between the electrical and mechanical domains

of the transducer. Random construction errors show up as random fluc-

tuations in 0.

From the relationships expressed in Equations 2-6 and 2-7, it is

evident that instead of the six measured parameters, there are only

four independent parameters required to describe the performance of a

transducer: Gy, Fy, 0, and Ct .

.. .. . .
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A simulated set of elements was generated using the results of

this study. Fy, Gy, and Ct were generated by a Gaussian number gener- 
0

ator with standard deviations, a, expressed as percentages of the mea-

sured means, of 0.9%, 17.4%, and 3.9%, respectively. A random number

generator and a ±12% distribution was used to generate values for D.

The resulting selection pool, when represented in a scatter plot of am-

plitude vs. phase, was indistinguishable from the real selection pool.

The actual range of values for each parameter is ±4% for Fy, ±45% for

Gy, ±11% for Ct, and ±13% for 1. These ranges, in turn, produce ampli-

tude and phase tolerances of ±9% and ±11, respectively.

2.2 A TOLERANCE STUDY

One of the obvious results of this thesis is that better response •

patterns can be obtained if the amplitude and phase responses of the :

elements do not vary greatly from one another. Thus, it is advanta-

geous to remove from the selection pool those elements whose amplitude 0

and phase responses do not fall within a specified tolerance limit of

the mean values.

Calculating tha amplitude and phase responses of each element in

every array position is a lengthy process. If relationships between

circuit parameter values and element performance characteristics can be

found, these relationships could be used as a criterion for element •

suitability, thereby avoiding lengthy calculations. "'
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Using the input/output relationships of the equivalent circuit, it

is possible to estimate the effects of extreme values for each para-

meter, and establish acceptable parameter value limits. The amplitude

and phase responses of a nonspecific transducer are calculated as one

parameter value is changed a specified percentage above and below a

measured mean value and the other parameters are held constant. The

mean value is obtained from the measurement of a set of elements. The

specified percentage is based on the percent differences between the

mean value and the maximum and minimum values of the measured set. To

see how the parameter values interact, three lines are plotted on each

graph. Each line represents different fixed values of an additional 0

parameter. This discussion is limited to the effects on an element's

open circuit voltage amplitude response.

Those parameters for which the amplitude, (and phase), responses

of the elements do not change significantly over their entire ranges

are D and Gy, (Figure 2.12). The amplitude response of an element does

not vary significantly for a ±30% variation in b, or a ±80% in Gy; S

large changes in Gy or 0 will not produce large changes in amplitude.

In contrast, Figure 2.13 shows the effect of a ±30% variation in Ct,

and ±20% variation in Fy. Large changes in either of these parameters S

will produce a large change in amplitude response. ',

Although the four circuit parameters are independent, one para-

meter can influence the effect another will have on an element's re-

sponse. Figure 2.14 shows how the amplitude response of an element

changes as a function of Gy, with Fv as the additional parameter. The

relationships mentioned in the previous paragraph are clearly visible. S

- -*- --- :'. *,.- - -'
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Jb d.

Note that near the lower extreme of Gy there is a sudden change in slope

for the curve indicating Fy at five percent below its mean value. This

indicates that the effect of Gy on amplitude is somewhat coupled to the

value of Fy.

Figure 2.15 is a similar plot, but Fy is allowed to vary over a

larger range. As seen, for Fy at twenty percent below its measured mean

value, the coupling between Gy and Fy is more pronounced. This results

in a reduced range of acceptable values for Gy. Therefore, a greater

tolerance in Fy reduces the range of acceptable values of Gy. Trans-

ducers with F and Gy values in this range may be unsuitable for the ar- 5

ray.

Although a 20% tolerance on Fy violates the lumped-parameter equi- 0'

valent circuit assumption, this plot is a valid representation of the S

coupling of Fy and Gy. And, even though the limits on the parameter val-

ues in these plots far exceeds those found in the measured set, these

plots do show the relative importance of each parameter. The results in- 0

dicate that the values of D and Gy are not as influential on the response %

characteristics as are Fy and Ct. It follows that greater uniformity of

element performance characteristics can be achieved by closely control- S

ling the tolerances on Fy and Ct .

Since only one set of elements was measured, it is not possible to

set absolute or relative limits on the parameter values for other sets 9

based on this set. However, this method has shown the effects each of

the circuit parameters has on an element's amplitude and phase response,

and on each other.

" -, .... , , ,, , , ., ... -, ". , - ". '.......'.." .',.',.'.,' ...... .." -'.'.- ..v "'.'...2.' .'.,'..'; '2 , ':.,,' .'.. " , :" a?" .."
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2.3 ARRAY RESPONSE AND ELEMENT TOLERANCES

Prior to this study, a rule of thumb relationship between array

response and constituent element tolerances was to set the tolerances

on amplitude and phase equal to the desired side lobe level. For exam-

ple, to achieve a -40 dB side lobe level, a .01 tolerance in amplitude

and phase is required. This translates into a ±1% tolerance in ampli- .

tude and a ±0.60 tolerance in phase. These tolerances are very strin-
0

gent ..nd very difficult to obtain.

The selection process presented in this thesis changes the above

mentioned tolerances by an order of magnitude. Elements with ±9% am-

plitude and ±11 phase tolerances, when randomly placed in an array

produce -30 dB side lobe levels, as predicted by the rule of thumb re-

lationship. However, using the same elements, the selection process

can produce arrays with side lobe levels that are within 1 dB of the

design level of -40 dB side lobes, (see Chapter Six).

i- ,.x,.
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CHAPTER THREE

IMPEDANCE AND INTERACTION

3.1 INTRODUCTION

Mechanical impedance, ZM, is defined as the ratio of the force ap-

plied to an object and the resulting velocity at the point of applica- 5

tion. In general, impedance is a complex quantity. The real part, re-

ferred to as resistance, is related to the power lost in the system.

The imaginary part, reactance, represents energy which is stored in the

system.

In acoustics, a more useful quantity is the acoustic impedance,

ZA. It is defined as the ratio of the pressure on a surface and the

volume velocity of the medium which results from the motion of the sur-

face. Since pressure and force are related by a factor of area, as are *5%

volume velocity and particle velocity, mechanical impedance and acous- S

tic impedance are related, ZM = S2 * ZA, where S is the area of the

face of the transducer.

For a plane wave incident on a piston, the force exerted on the S

piston is obtained by averaging the pressure over the surface area of

the piston. In this way, the acoustic impedance is transformed into

mechanical Impedance. In the equivalent circuit, the coupling of the S

mechanical domain with the acoustic domain is represented by an ideal

transformer with a turns ratio equal to the area of the transducer .%

face. 0

.W
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3.1.1 SELF IMPEDANCE

The head of a tonpilz transducer can be modelled as a rigid square

piston in an infinite baffle. For a piston which is small compared to

wavelength, the pressure on the face of the piston will vary with posi-

tion. This being the case, the acoustic impedance of the transducer is

no longer a simple ratio.

Using the Green's function for radiation from a planar surface,

Morse and Ingard [3] derived an expression for the acoustic radiation

impedance of a square piston of side a. The expression is given below.

2Z(w) Pca 2[ (ka) + jXo(ka)] (3-1)
00

where
7r/2 2

X0 Ml(ka) - f sin((ka)cos(q))sin (q)dq
0

e =1 2Jl(ka)/ka .5..0

3. 1 . 2 MUTUAL TMPEDANCE

For the two square pistons shown in Figure 3.1, the pressure on

the face of one piston is a function of its own interaction with the

medium and of the pressure field of the other transducer. Simultane-

ously, the other piston is experiencing the same effects as a result of

the pressure from the first piston. The motion of each piston is,

therefore, coupled with the other.
0
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As expressed below, the total impedance on one transducer is the
Z1

combination of its self impedance,Z s and the mutual impedance with 0
5

the other transducer. %

1 1 1 2z = Z I + (v/) Z1 2 (3-2)ZT s v2m

12.Zm is called the mutual impedance coefficient. v 2 /v 1 represents the

of the velocity amplitudes of the two transducers. The superscripts

refer to the elements involved.

For an array of M transducers, the total loading on one element is

a function of its self impedance and the weighted sum of the mutual im-

pedances with all the other elements. I

M 0
ZT = Z3 + E (v /v.) Z (3-3)
T s i=1 i j m

i*j

If all the Zi 'j can be determined, as well as ZJ , it would be possible
m 5

to determine the acoustic radiation loading on every element in an ar-

ray. The ratio, vi/vj, representing the ratio of velocity amplitudes,

is equivalently a ratio of shading coefficients.

Using the expression for self impedance, Equation 3-1, and an ex-

pression for the mutual impedance, Reference [4], Schafer (21 has de-

veloped a computer routine, "MUTUAL", to compute the radiation loadings

on all the positions of an 8 by 8 array. For this study, this program

has been expanded to handle all types of four-fold symmetric arrays up

to 12 by 12 in size..

. or

g2 e r~ge e- - -0
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3.2 INTERACTION FOR THE TRANSMIT AND RECEIVE CASES

Since the mutual interaction depends on a ratio of the velocities

of two elements vibrating in phase, a change in shading values will af- 1. N".

fect this interaction. When an array is used in the transmit mode, the

elements' amplitudes are shaded in a manner to produce a specified di-

rectional response. Each set of shading values corresponding to a dif-

ferent beam pattern will subject the array elements to different mutual

interaction effects.

The receive case is different. Although shading values are still .

used in beamforming, they have no effect on the acoustic interaction

between elements. The shading values are applied to the output elec- .

trical signals and therefore do not influence the impedance on or the

motion of the transducers.

3.2.1 THE INFLUENCE OF THE INCIDENT ANGLE

Unfortunately, the receive case can not be simply modelled by

equating it to the transmit case with unity shading. For a plane wave

with an incident angle 6 * 0, the elements separated by d = X/2 will

not vibrate in phase. If the elements are modelled as point sources

placed at their respective centers, the responses from two elements

separated by a distance d will be out of phase by k'd'sin9, (see Figure

3.2).

If the phase relationship between two elements changes, so will

their interaction. The interaction is reflected in the radiation re- '

a'.

sistance and the power radiated. To see this, consider two sources

separated by a distance d. If these two elements vibrate 1800 out of 4.4'

*l%.

-.',
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phase, as in a dipole, the total power radiated is, for k'd = 1, one

third of that for a single source. As k'd changes, so does the amount

of power radiated. When two elements vibrate 900 out of phase, the to-

tal power radiated is twice that of a single source. Similarly, for

two sources vibrating in phase, the total power radiated is four times

that of a single source [5].

It is easy to extend this example to the receive case. The result

is that as the incident angle changes, so do the phase relationships,

and the elements' mutual interactions. Consequently, each element's

performance characteristics will change with the incident angle.

This is disastrous news for the problem of placing elements in an

array. If the phase relationships are determined for a particular in-

cident angle, the radiation loadings and element responses can be de-

termined. An array can then be designed which has minimal error for

that incident angle. However, the errors at other incident

angles are not accounted for by this element placement.

3.3 TRADITIONAL AND NEW ASSUMPTIONS -.

Before the inclusion of mutual interaction effects became fea- 7

sible, it was assumed that the entire array experienced Pc loading.

Since the results based on this assumption have been acceptable, the

mutual interaction effects were considered second order effects.

Through the use of "MUTUAL", it is shown that mutual interaction ef- :.' 

fects on individual elements are not second order.
•S

1'
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In the transmit case, the loading on the centermost elements dif-

fers from the loading on a single square element, as computed using

Equation 3-1, by 6% in the resistive component and -83%, reactive.

This error increases to 18%, resistive, and -97%, reactive for elements P

farthest from the center. In the receive case, for a 00 incident an-

gle, the errors are 9%, resistive and -85%, reactive for centermost and -

4.5%, resistive and -52%, reactive for outermost. .

These errors are far from what may reasonably be considered second

order. Although the loading on every element is dramatically different

from Pc loading, the loading on the entire array, with interaction ef-

fects included, can still be reasonably approximated by Pc loading, 0

[6]. The larger the array, the more accurate is the approximation.

For the purpose of this study, it is assumed that for plane waves

incident at angles * 00, the radiation loadings on the elements of an

array do not differ significantly from the loadings for 0* incidence.

Thus, the radiation loadings for all the incident angles are assumed to

be the same as the loadings for 0* incidence.

The following section illustrates how changes in radiation loading

do not significantly affect element performance. Therefore, the small .t

changes in radiation loading which occur over different incident angles

will not produce significant changes in element response. %

3.4 THE EFFECT OF ELEMENT TOLERANCES ON MUTUAL INTERACTION

In order to determine the radiation loading on every position in

an array, it is necessary to know the shading values for each position.

0
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These radiation loadings are then used to determine the elements' per- .,

formance tolerances. However, the use of ideal shading values assumes

that each shaded element is identical. But this is not true! It is

important to ask, and answer, what effects do element tolerances have

on the radiation loading?

An array was designed using the ideal radiation loadings to cal-

culate element tolerances. The normalized mean amplitude values of the

elements in each symmetric array position were then multiplied by the

shading values for each position to produce new shading values for each

position. It was assumed that the phase errors of each element are S

small and were not included. These new shading values were then used

to re-evaluate the radiation loadings for each array position.

For those elements which comprise this array, new amplitude and 0

phase characteristics were determined. A new response pattern for this

array was then determined using the newly computed element characteris-

tics. The resulting response pattern did not exhibit significant

changes from the original pattern. The new radiation loading that the NI'

elements experienced due to their neighbors' new tolerances was also

computed. S

The first recalculation of the radiation loadings on each position .-

showed changes ranging from 0% to 3% in resistance and 1.5% to 90% in

reactance. Yet these changes resulted in a maximum change of only 3% a

in amplitude and 0"5 in phase. It should be noted that the greatest

changes occur for radiation loadings corresponding to the array posi-

tions farthest from the array center. The errors for the closer 0

N.
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positions are an order of magnitude smaller. The second recalculation

of radiation loadings produced even smaller changes. This translates -

into smaller errors in the amplitude and phase.

Additionally, these new performance characteristics were used to

redesign the array from the original selection pool. It was assumed

that the errors in each symmetric array position would not change sig-

nificantly from those of the first array. (This was tested and shown "'h

to be valid.) A comparison of this new response pattern with the first S

also showed no significant degradation or improvement. The normalized

mean amplitude values for each position were used to recalculate the

amplitude and phase characteristics of each element. These new charac-

teristics were not significantly different from the original values. -

In conclusion, the errors introduced into the radiation loadings

by element tolerances are small enough to be neglected. 0.

Ik

%
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CHAPTER FOUR 
0'

PERMUTATION SEARCH

4.1 INTRODUCTION

The process of placing in an array elements which have different

tolerances involves combining the elements in such a way as to minimize

the total impact of their errors on the directional beam pattern of the

array. This process resembles a class of problems in industrial engi-

neering known as the Travelling Salesman Problem. Travelling Salesman

Problems involve ordering a set of elements in different ways in an at-

tempt to meet a certain objective. The elements could represent the

stops a salesman has to make during a trip and the objective could be

to minimize the number of miles travelled. Or, in the case of array %

design, each element would represent a transducer element placed in an

array position, and the objective would be to minimize the error impact •

on the array response.

For small problems, i.e., those involving a small number of ele-

ments, there are solution techniques which will give a globally optimum

solution. But with large problems, the amount of computer time these

methods require becomes unreasonable. For an array of 36 positions and

36 elements, there are 36! possible permutations of the elements.

There are other methods of solution which may not produce a globally

optimum solution, but do offer a considerable reduction in necessary

computer time. One such method is called Permutation Search.
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4.1.1 PROBLEM DEFINITION

A permutation, denoted [pnl], is any ordering of a set of elements.

For each permutation, there is an associated objective function, E(pn).

Additionally, there may be constraints on how these elements may be ar-

ranged in the permutation, denoted as the set of feasible permutations, .

G. The problem solved by Permutation Search can be formulated as

Find [pn] to minimize

E(pn), such that (4-1)
pn EG.

4.1.2 THE ELEMENT PLACEMENT PROBLEM

For the process of creating an array with M positions, using a set

of N transducer elements, where N ) M, the problem formulation is as

follows. , ,

Let X(m,n) be the decision variable associated with element m and

position n, such that 0

X(m,n) = I if element m is in position n
= 0 otherwise. (4-2) %-

There are two constraints on the placement of the elements. The first

is that every array position must be filled and by one element only. -.

For those humans who know that two elements may not occupy the same po-

sition sinmltaneously, the second part of this constraint may seem un- 4-

necessary. However, computers have no way of knowing this unless they 'p.-

are told so.

.
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Z X(m,n) = 1 n =

m=,1 (4-3)

The second constraint is that each element may either be assigned to W%

one array position, or unassigned. ,Ms_

M
Z X(m,n) < I m = 1,2,...,N

n= 1 (4-4) -

The array response, R(e,4), at incident angles e and 4, is

M N
R(0,0) = 20 log [ E I X(m,n) A(m,n)'exp{i[kun + a(m,n)]} ,

m-1 n=1

where (4-5)

X(m,n) = Decision variable
A(m,n) = S(n) • Real(Elemnt(m,n)}
S(n) = Shading value at position n
N = Number of array positions
M = Number of elements in the selection pool .-.

a(m,n) = Imaginary{Elemnt(m,n)}
un = k[C(n)'sinO cos + D(n)'sine sini 1
Cfn) = x coordinate of position n
D(n) = y coordinate of position n Z

Elemnt(m,n) = Amplitude, (real) and Phase, (imaginary)
response of element m at position n.

The objective is to minimize the total error, defined as the sum over

all constrained angles of the error at each angle:

E{X(m,n)} = B (L(e,4) - R(e,)} 4-,6
B (4-6) -,-.

where ..

L(e,4) = Desired level at angles e and 4.
B = The set of all constrained angles
E = I if L(8,) > R(8,).

= 0 if L(e,) < R(e,). 0
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4.2 THE SEARCH PROCESS*

Permutation Search is a process which searches for a locally opti-
U. %

mum permutation. It looks in the neighborhood of an initial base per- e%

mutation for permutations which improve the objective function. The

neighborhood of a permutation is defined as the set of permutations

which can be obtained through a series of element exchanges. A base

permutation is any permutation from which a new permutation is formed. -

The initial base permutation, or the first permutation in a series of

permutations, is denoted [PO]. For example, a permutation, [pi], of 5

elements,' . .

[pi] = 4 3 2 5 1 '* S

is in the neighborhood of the permutation

[po] = 5 4 3 2 1

since it can be reached from [P0 ] through a sequence of one for one ad-

jacent element exchanges, viz.,

[PO] = 5 4 3 2 1 ".- ,'

[P1 ] = 4 5 3 2 1

[p2] = 4 3 5 2 1

1P 3  = 4 3 2 5 1.,.-..'n,,

When the final element in the permutation is exchanged, the next *.-*

exchange involves the first two elements of the existing permutation. '.,. p

In thr ample above, the next two per:iutations would be

[p 4 ] = 4 3 2 1 5

[p5 ] = 3 4 2 1 5.

* The Permutation Search orocedure presented in this section is a %

synopsis of reference [7]

.- S" .

~ 5.,,. *,.5~*% *$~ 5 ~ ..--.- 5~ ,-. %' _s.
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Exchanges can be the interchanging of two elements, or shifts of

large blocks of elements. The nature of the problem dictates the ap-

propriate type of exchange. For the transducer array, one for one ex- >! "

changes of adjacent elements are performed.

4.2.1 EVALUATING THE PERMUTATIONS

Since Permutation Search looks for those permutations which im-

prove the value of the objective function, E(pn), E must be determined

for every permutation. It is obvious that not every exchange will re-

sult in a permutation with an improved objective function. If an im- 0

provement is found, then the next exchange is performed on the newly / .

achieved permutation, at the position adjacent to the previous ex-

change. If there is no improvement, the next exchange is performed on 0

the previous permutation, also at the adjacent position. Any per- ".."

mutation obtained as a result of an element exchange performed on a

base permutation is called a trial permutation. If this trial per- 0

mutation improves the value of the objective function it becomes the

current base permutation. Therefore, a sequence of bases represents a

continuous improvement in the objective function. This sequence will S

converge to a locally optimum solution in the neighborhood of the ini-

tial base permutation.

4.3 ARRAY DESIGN SIMPLIFICATION

The Permutation Search formulation of element placement problems

can be set up in such a way as to sidestep the two constraints. Let %

the permuLation array, (note, not permutation), be a vector with as

'7
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* ,

many components, or slots, as there are transducer elements in the se-

lection pool. Each slot will represent either a position in the trans-

ducer array, or a position on a workbench, i.e., an unassigned posi-

tion. A permutation consists of each transducer element assigned to

only one slot in the permutation array. Thus, every slot in the permu-

tation array is filled. This arrangement automatically ensures that -

any permutation in the neighborhood of the first permutation satisfies

the constraints.

Finding R(fl,) can also be simplified through the implementation

of the permutation array. Let there be a function assigned to each

slot of the permutation array. This function operates on the amplitude

and phase characteristics of the element assigned to that slot in a

manner which is unique to the array position that the slot represents.

The uniqueness of this function is derived from the x and y coordinates

of each position as well as the shading value at the position. R is r--

found by summing the value of this function over all the slots. Thus,

the problem reduces to

Given [pO], , s
Find [pn] to minimize (4-7)

E(pn). 0

4.3.1 PERMSER

The application of Permutation Search to the problem of element

placement in arrays is best described by an example. This example dem-

onstrates how it is implemented in the FORTRAN routine, "PERMSER", (see S
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Appendix D for a listing and section 4.4 for a discussion of this pro-

gram). There are seven elements in the selection pool, numbered 1 0

through 7. There are, therefore, seven slots in the permutation array, ." p

[P]= / . (4-8)T 5f 7a-

The "transducer array" to be designed has five positions, represented !,

by the first five slots in the permutation array. "Workbench" posi-

tions, slots 6 and 7, indicate an element unassigned to an array posi-

tion. Normally, transducer elements are assigned a number to distin-

guish them. For this example, the "response" of each "transducer ele-

ment" will be represented by its assigned number. The unique function

at each slot, representing the contribution to the array response of

each element, will be the product of the slot index and the "response"

of each "transducer element". "Workbench" elements do not contribute

to the response of an array.

The response of the array is the sum of the values of the function

at each slot over all the "transducer array position" slots. For this

example the objective will be to maximize E(pn).

Starting with the initial base permutation,

[Po] = 1 4 2 6 5 / 3 7 E[PO] =64

the first exchange gives a trial permuation, _

with an objective function E[Pt] = 61. This permutation does not re-

suit in an improved objective function, so the next exchange is per-

formed at the adjacent permutation array slot in [PO],

* ~ ," ' ' '.U. ~ % ~ ~ ~ ,% ~ % U. % % U
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[Pt] -1 2 4 6 5 / 3 7.

The objective function is E[Pt] = 66. Since this is an improvement

over the value of the objective of the current base point, this trial

pirmutation becomes the current base point,

[P1] = 1 2 4 6 5 / 3 7 E[P 1 ] = 66.

Exchanging cyclically through the permutation array, the process con-

verges to a locally optimum solution. The sequence of successive bases i, ,'

is given below.

[Po = 1 4 2 6 5 / 3 7 E[P ° ] = 64

[PI] 1 2 4 6 5 / 3 7 E[P 1] =66

0

[P2 1 1 2 4 5 6 / 3 7 E[P 2] = 67

A local optimum has been reached. At this point, "PERMSER", will
S

initiate what is called a new start. A new permutation is generated by

randomly rearranging the unassigned elements, and leaving the elements

which are assigned to "transducer array position" slots where they are.

It is called a new start because the new permutation represents a new,

untested neighborhood and retains the same level of achievement of the

objective function.

The new start, shown below, has the same objective function value A

as the current base permutation, but is a different permutation.

[F3] -1 2 4 5 6 / 7 3 E[P 3 ] =67 S

p. '
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From here, there is only one more base permutation that will improve S

the objective function. The new local optimum is

[p4 ] = 1 2 4 5 7 / 6 3 EP 4] 72.

The global optimum,

[pn] = 3 4 5 6 7 1 1 2 E[P n ] = 85

is not attainable in either of the two neighborhoods searched.

In this example, the elements in the permutation array slots rep-

resenting the workbench were never in a "transducer array position"

slot for a base permutation, (except for the final permutation). This

that there is only one entry point into the "transducer array position"

slots for elements that are in "workbench" slots. A much more effect- t-.

ive permutation array, which has many entry points, is illustrated be-

low. ~0

[P ]= T (4-9)

For this permutation array, "transducer array positions" are represent-

ed by slots 1, 3, 4, 6, 7, and the "workbench" slots are 2, and 5.

This arrangement gives the "transducer elements" in the "workbench"

slots a greater chance of being exchanged into a "transducer array po-

sition" slot. N

p'. S.
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The emphasis on the ease of getting elements from the workbench

into the transducer array is justified. Due to the way the responses

of elements in symmetric array positions interact, it is important that

as many new combinations as possible be tried, (see section 5.4.1).

This requires that elements initially on the workbench be included as

often as elements initially in the transducer array.

4.4 TEST RESULTS 0

"PERMSER", the FORTRAN implementation of Permutation Search, has

been successfully used to place elements in both 3 by 3 and 6 by 6 ar-

rays from scratch, as well as 7 by 7, 8 by 8, and 9 by 9 arrays with

non-random starting points. It can handle any four-fold symmetric ar-

ray as well as most other types of arrays. There are several param- •

eters which are used to control the Permutation Search algorithm, each

with different effects on the outcome. They can influence run time,

quality of result, both or neither. The following parameters are those

which are not directly specified by the problem.

4.4.1 ZLOLIM 0

The computer variable ZLOLIM represents the desired or acceptable

amount of error in the response pattern of the array being designed. A

comparison of ZLOLIM with the value of the objective function at each

base permutation determines if the desired error has been achieved.

ZLOLIM controls both the run time and the quality of results. By set- .4

ting ZLOLIM very low, the run time increases, and the quality of

VO..
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results will usually improve. The improvement in results is a reflec-

tion of the number and size of the neighborhoods searched. If more

time is used, more neighborhoods can be searched.

The value of ZLOLIM can be determined by using, in the YVALUE rou-

tine of "PERMSER", the parameters of an array whose response is already

known. An evaluation of how well this array meets the design specifi-

cations at the constrained angles will give a ballpark figure for

ZLOLIM.

An alternative use of ZLOLIM is to set it equal to zero. The run

time is then controlled by other search routine control parameters.

This method results in a loss of control over the amount of acceptable

error, but eliminates the need to determine ZLOLIM in advance. This is

the first of the two control parameters which are capable of stopping

the execution of the Permutation Search algorithm.

4.4.2 CONSTRAINED ANGLES ...

Another parameter which controls the Permutation Search algorithm .,

is the number and location of the constrained angles. As the number of

constrained angles increases, so does the run time. The only limits on %

the maximum number of constraint points are those imposed by the com-

puter facilities and the amount of time allowed. However, there are

limits to the fewest number of constraints which can be specified. If

too few angles are constrained, the results are generally poor since 0

the response is controlled in too few places, (see Appendix C). Simi-

larly, if the constrained angles are concentrated in specific areas,

the response at other points will tend to be quite poor.

-, --- -- -
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It has been found that a loose set of constraints, such as incre-

ment angles of Ae = 50 and A = 200 give results nearly as good as S

those for a tighter set of constraints, such as Ae = 20 and A = 50,

but with a 40% to 75% reduction in run time. The range of reduction in

run time is influenced mainly by the number of new starts. These con-

straints are valid for element spacing, d, equal to V2.

It is obvious that with tighter constraints, a better solution

will most likely be found, but the trade off is an unavoidable increase 0

in run time.

4.4.3 MAXITE

MAXITE controls the maximum number of iterations of the Permuta-

tion Search algorithm. It influences both the amount of computer time

and the quality of the final results. The larger MAXITE, the longer

the run time. For smaller arrays, 3 by 3 and 6 by 6, 20 iterations was

the maximum used in this study. Ten iterations was the maximum used

for larger arrays, 7 by 7 up to 9 by 9. Fewer iterations are used for

larger arrays because of the longer run time associated with them.

MAXITE is the other parameter which can stop program execution. The

quality of result is affected by MAXITE through its association with

the effects of NCOUNr.

4.4.4 NCOUNT

NCOUNT controls the maximum number of new starts that "PERMSER"

will use during its search. It may seem that setting NCOUNT very high

ensures that many neighborhoods will be searched, thereby improving the

"-
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results. In practice, this is not the case. For NCOUNT values greater

than 5, the amount of improvement for each new start decreases with

each successive new start. Thus enters the problem of diminishing

returns!

This may seem to imply that the current solution is near the glob-

al optimum. Unfortunately, this is not usually so. If two arrays are

designed from the same selection pool of simulated elements, the re-

sults can vary greatly. The elements selected and their array loca- •

tions will be entirely different. If both attempts are random starts,

and the search covers the same number of neighborhoods, the resulting ,R

arrays can have good response patterns, or bad response patterns. 0

Therefore, diminishing returns do not necessarily herald proximity to a

global optimum. An accurate interpretation is that the quality of the

locally optimum solution depends on the amount of area in the solution

space that has been searched. %

The wide variation in the quality of responses obtained does not %.%

discourage the use of Permutation Search. The ratio of good responses •

to bad responses for a given selection pool is so great that with only %

a few runs of "PERMSER", an acceptable result will be found.

4.4.5 OTHER INFLUENCES

As mentioned earlier, there are parameters which result from the

problem type which can influence "PERMSER". The number of elements in .

the selection pool directly influences the run time, and to a lesser

extent, the quality of results. An increase in the number of elements

will increase the run time and perhaps improve the results due to a

k. ,
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greater number of permutations available. The size of the array influ-

ences the run time in a manner similar to the size of the selection

pool.

4.4.6 THE STARTING POINT

Several tests were done to determine the effects of different

starting points. The different types of starting points used included -

random arrangements, sequential arrangements, and group arrangements of

elements in the permutation array. Sequential arrangements are those

in which elements adjacent to each other in the transducer array are

adjacent to each other in the permutation array. Group arrangements

are those in which elements that occupy symmetric array positions are

adjacent in the permutation array. Many variations on these different

arrangements were also tried. Results indicate that the best array re-

sponse patterns are obtained from randomly arranged initial permuta-

tions. Those arrays which result from group arrangements are not much

poorer than those from the random arrangements. They differ most sig-

nificantly in run time and efficiency. Efficiency is defined as the

average amount of improvement per base permutation. This does not mean

that the quality of the initial base permutation has no effect on the

outcome. It means the arrangement of elements in the permutation array

does not affect the objective function of the initial base permutation.

The most significant and obvious result is that the best results

are obtained from those initial permutations with the best initial re-

sponse patterns. Therefore, if permutations with good response pat-

terns can be easily found, better results can be obtained.

<%
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4.4.7 FLOW CHART OF "PERMSER"

The following is a discussion of the operation of "PERMSER". A 0

flow chart for "PERMSER" is shown in Figure 4.1. The element para-

meters and Permutation Search control parameters are read in subroutine

DATAINN. Control passes from DATAINN to NEARIN, where the element 0

parameters are written into an output file. This file will be used by

"NEARPRES", (see Appendix F), to compute and print the response pattern

for the initial permutation. The value of the objective function is _

determined in ZVALUE and is used as the initial reference point. The

interchanging of elements occurs in PERMUTE. Several evaluations are

also made in PERMUTE, but for simplicity, are depicted as occuring out- S

side of PERMUTE. EVAL determines whether the trial permutation im-

proves the objective function. To do this, it calls ZVALUE. ZVALUE YN.

calls YVALUE and INITIALIZE to determine the response of each trial

permutation at the constrained angles. INITIALIZE determines the re-

sponse at e = 00 and t 0, i.e., the main beam response. YVALUE de-

termines the response at every constrained angle and subracts it from

the main beam response to determine how many dB down the response is at .*

each constraint.

At this point, there are two possibilities. Either, the trial •

permutation becomes a new base permutation, or the trial permutation is

unsuccessful. PERMUTE will continue exchanges of elements either on

the new base permutation, or on the previous base permutation. When a

complete cycle of exchanges does not present an improvement, NEWSTART

is called. If the maximum number of new starts has not been exceeded,

a new start is initiated. If the maximum number has been exceeded, the S
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search process stops. Additionally, after a complete cycle of unsuc-

cessful exchanges has been made, PERMUTE determines if MAXITE has been -

exceeded. If it has, the search process is terminated.

Once the search process is terminated, the results are printed

out. The parameters of the completed array are written into a file to

be used by "NEARPRES" to print a response pattern.

'N

0

S% _

0"%."
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CHAPTER FIVE %

VTHE NEO-KENDIG SELECTION SCHEME

5.1 INTRODUCTION

As menticned in Chapter Four, if an initial base permutation

yields a good response pattern, Permutation Search will find a permu-

tation with a better response pattern. The problem, then, lies in 0

finding a good starting point.

Since the Kendig Scatter Diagram Method has been used success-

fully to design arrays with reduced response pattern errors, it is a

logical good starting point. This chapter presents a new selection

scheme based on the Kendig method. Since the derivation in this chap-

ter follow- Kendig's derivation, and presents the same idea of grouping .

elements to cancel their errors, this new method is called the Neo-

Kendig Selection Scheme. However, this new scheme avoids the errors .- .

inherent in the Kendig method by using a three-dimensional model of ar- -

ray performance instead of the two-dimensional model used previously.

In his report [1], Kendig presents a technique to minimize the im-

pact of the individual transducer element errors on the entire trans- %

ducer array response. In essence, the Kendig Scatter Diagram Method , % %J

involves the pai-ing of elements which will occupy symmetric positions

along a line through the center of the airay in such a way as to par- . ,

tially cancel their respective amplitude and phase errors. This ch-

nique was implemented in a BASIC routine by Schafer [2]. It represent-

ed an improvement over the more tedious hand selection version previ- W

ously used.

. ",
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The Neo-Kendig method represents a substantial improvement over

the existing versions of the Kendig Scatter Diagram Method. It in-

volves the simultaneous selection of four elements to occupy symmetric

array positions, instead (f pairs of elements as previously done.

5.2 DERIVATION "

In this derivation, the transducers are treated as point elements 0

located at the center of the transducer faces. The contribution of an

element, m, located at a position (Xm,Ym) in a planar array, see Figure q..

5.1, to the array response is -

Qm = Am exp{i(k'Um + am)} , (5-1)

where Am is the product of the shading for position m and the amplitude

response of the transducer element in that position, and am is the sum

of the phase shading for position m and the element's phase response. -

Um is a function of the x and y coordinates for position m and the an-

gles of incidence 8 and 4, viz.,

Um = Xm'cos sine + Ym'sin sine .
or (5-2)

Um = Xmucos + Ym'usin where ucos = cos4 sine

usin = sin sine

Expanding the exponential into sin and cos form yields

exp{i(k'Um + am)) = cos(k'Um)cos(am) - sin(k-Um)sin(am) (5-3)

+ itsin(k'Um)cos(am) + cos(k'Um)sin(am) ].

* . ,
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Using Equation 5-2, the sin and cos terms of Equation 5-3 can be

further expanded into

cos(k'Um) = cos(k'Xm'ucos + k'Ym'usin)
= cos(k"Xm "ucos)cos(k"Ym"usin) (5-4)

- sin(k.Xm.ucos)sin(kYm.usin)

and
,N-N

sin(k-Um) = sin(k'Xm'ucos + k'Ym'usin) 0
= sin(k"Xm"ucos)cos(k"Ym"usin) (5-5)

+ cos(k.Xm'ucos)sin(k-Ym'usin).

Consider four positions located symmetrically about the center of

an even array, (Figure 5.2). The contribution of these four elements

isN

Q4 = Alexp{i(k'Ul + al)} + A2 "exp{i(k'U2 + a2)} (5-6)
+ A 3 "exp{i(k'U3 + a3)) + A4 "exp{i(k'U4 + a4)}, N'.

N,'

where

U I = Xl.ucos + Ylusin U3 = -Xl~ucos - Ylusin
U2 = -Xl.ucOs + Ylusin U4  Xl-ucos - Ylusin (5-7)

Note that U1 = -U3 and U2 = -U4 . It is assumed there are no position-

al errors when the elements are placed in the array. -N

Breaking the response up into real and imaginary components, the

real part can now be expressed as

Re{Q 4} = Nl[cos(k.Ul)cosal - sin(k.Ul)sinal] +
A 2 [cos(k.U 2 )cosa 2 - sin(k-U 2 )sina 2j +

A3 [cos(k.U 3 )cosa 3 - sin(k.U 3 )sina 3 ] +
A4 [cos(k.U4 )cosa 4 - sin(k.U 4 )sina4]. (5-8) •
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For small phase, i.e., a << I, (in radians), the following approxima- .?

tions can be made,

cos ai = 1 and sin a i = ai . (5-9)

Substituting Equations 5-7 and 5-9 into Equation 5-8, the real and

imaginary parts of the contribution can be written as shown in Equa-

tions 5-10 and 5-11, (Figure 5.3). The terms in square brackets will *

be referred to as the Kendig Terms and distinguished by the number ap-

pearing above each term. The sin and cos products will be referred to

as the Kendig Coefficients.

This preceding derivation is valid for all four-fold symmetric i.

even arrays. The derivation for odd arrays does not differ substan-

tially and produces an equivalent result. It is presented in Appendix -

B . -".

. ., ..

5.3 THE KENDIG TERMS

S

In Equations 5-10 and 5-11, terms 3, 4, 7, and 8 include both the

phase and amplitude responses of the elements, while terms 1, 2, 5, and

6 represent contributions from amplitude only. If all the elements

have ideal response characteristics, e.g., Ai = 1.0 and ai = 0.0,

only one term, term 1, would be non-zero. Thus, terms 2 through 8 rep-

resent the error introduced into the array response. Minimizing the

total error entails minimizing all seven of these terms. Ie

A%." ,,'",-" l
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A look at terms 3 and 4 reveals a dilemma. Minimizing term 3 P-

means 
-

A3a 3 + A4a 4 = Ala I + A4a 4

or (5-12)
A3 a3 - Alal = A 2a2 - A4 a4

5--

while minimizing term 4 means _

A 3a 3 + A 2a2 = glal + A4a4

or (5-13)
A3a 3 - Alal = A4a4 - A2a 2 •

Excluding the uncommon case of A2a2  A4a4 , minimizing term 3 will nec-

essarily prevent an equal reduction of the value of term 4. This rela-

tionship between terms 3 and 4 exists between all combinations of terms

3, 4 and 8, as well as combinations of terms 2, 5, and 6, (see Table

.

Consider the Kendig Coefficients. For any array, x and y are , '.

known for every position. Since ucos and usin are functions of the in-

cident angles, the Kendig Coefficients can be determined for specific

incident angles. If elements are then chosen in such a way as to mini-

mize the sum at each symmetric position of the product of the terms and

coefficients, the error at this angle is reduced. However, at a dif-

ferent incident angle which is not nearby the first, this minimization

no longer necessarily holds because the incident angles result in dif-

ferent Kendig Coefficient values. For a more detailed discussion of

the implications of this, see Appendix C.

~ .- -- -- ,-- .--
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Kendig Terms

Table 5.1

Term 2 Al A3 A+A

Term 5 Al-A = 4-A

Term 6 Al-A 2-A

Term 3 Aja3 - Alal A2 a2 -A4a 4

Term 4 A3 a3 - Alal A4 a4 - A2 a2  I

Term 8 Alal + A3 a3 =A 2 a2 + A4 a4

%

% % %
16% YI-
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The solution to reducing the error impact lies in reducing each

term independently of the others, (in this case, independently means _

without regard to the interaction of the Kendig Coefficients). If each

term is as small as possible, the product with the coefficients will

also be small. Thus, the error impact will be reduced over all angles.

5.4 THE SELECTION ROUTINE

As just discussed in the previous section, reducing the total er-

ror introduced into the array response involves minimizing the Kendig

Terms individually. In order to determine which terms to minimize and

in what order, the Kendig terms of Equations 5-10 and 5-11 were pro-

grammed into a BASIC routine on an HP9825B calculator. This routine

requires, as an input, the radiation loading for each symmetric array

position. Using these and the equivalent circuit parameters of each
%. %i

element, it computes the amplitude and phase response for every element F-'* r

in each symmetric position. Using one of the Kendig terms as a criter-
0

ion, the routine searches through the set of responses for a chosen po-

sition, and finds the group of four that gives the lowest value for the "-'.-.:?

specified term. Since terms 3, 4, 7, and 8 represent the error due to N

both the phase and amplitude responses of an element, combinations of '"

these terms were the Kendig terms used. Although terms 2, 5, and 6 ap- *.

pear to depend on amplitude only, the phase responses are still repre-

sented in these terms through the approximation cos ai = 1. These

,,terms are not used because the phase influence is much less.

'~ ' %%,,
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5.4.1 TEST RESULTS

Many different tests of the selection process were done. Using

the results of section 2.1.2, several selection pools were generated on

the computer. Different combinations of terms 3, 4, 7, and 8 were used

to test the selection process. These selection pools were used in var-

ious ways to design many arrays. Combinations of one, two , three or

four term(s) were used for the selection criteria. . r"

It has been found that use of any two terms for the selection cri-

teria gives the best results. It is not surprising that minimizing two

terms would give better results than minimizing only one. However, it
IL

is surprising that minimizing three or four terms does not present add-

itional improvement. There are no apparent causes for this phenomenon.

For a collection of selection pools, there is no particular com-

bination of terms 3, 4, and 8 that will give the best response for ev-

ery selection pool. Any combination of terms will choose the same four

elements for each symmetric position, but will arrange them differently

within the array. These different arrangements, or permutations, can

sometimes result in vastly different responses, and other times give

comparatively equivalent responses. In addition, if two arrays are

created from a large selection pool, the combination of terms which re-

sults in a good first array does not necessarily produce a good second \-

array.

Term 7 has been excluded from consideration because it does not

have the same form as terms 3, 4, and 8; it offers no information on

the arrangement of elements in the groups selected. Additionally, for

small amplitude and phase variances, the range of values for term 7 is

,. '. %,.

%
% ,
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not as great as for the other terms. Greater reduction of error impact

can be achieved by striving for the minimum value of the other terms

than for the minimum value of term 7.

5.5 THE NEO-KENDIG COMPUTER ROUTINE, "HKV"

The following is a brief description of the actual selection pro-

cess. For an even array, the radiation loading for the symmetric posi-

tion closest to the array center is used to determine the amplitude and •

phase responses of all the elements in the selection pool. For these,

the means and variances are found. Elements that are farthest from a

reference point are temporarily removed and new means and variances are

found. Again, the elements farthest from the means are removed. This

process is repeated until there are between 10 and 14 elements remain-

ing in the pool.

Several different methods of searching the selection pool for the .

10 to 14 initial elements were also tried. These included using the

initial means of the entire selection pool as the reference point for •

the entire array, or using no reference point. It was determined that

use of the first four chosen elements as a reference point for all sub-

sequent positions produces the best results. The reference point to 5

choose the first four is the moving mean just described.

The value of the first Kendig term is then determined for every

possible permutation of four elements, a total of 24024 trials for 14 ,

elements. The lowest 40 of these are kept. The value of the second

term is then ascertained for these 40 best permutations. The permuta-

tion that produces the minimum response for the second term is the 0

I
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permutation for the first position. Next, the chosen four elements are

permanently removed from the selection pool and those temporarily re-

moved are restored.

The means and variances of these four elements are determined and

used as a reference point for all subsequent selections. The selection

process for every successive position follows the same procedure except

that the elements removed are those farthest from the means of four

elements first chosen. Consequently, it is not necessary to recalcu- •

late the means and variances of the elements in the selection pool,

once the first symmetric position is filled.

The routine for an odd array is different in one respect. Since S

the array has one unsymmetric position at the center of the array, the

element nearest to means of the group of 10 to 14 elements is chosen

and placed in the center position. The amplitude and phase response of 0

this element is used as the reference point for all subsequent

selections.

, •

5.5.1 FLOW DIAGRAM FOR "HKV"

The Neo-Kendig method has been implemented into a FORTRAN computer

routine called "HKV, (a listing is in Appendix E). This routine

allows any combination of Kendig Terms 3, 4, and 8 to be used as the '.

selection criteria. A flow diagram is shown in Figure 5.4. ;1

The element circuit parameters, and selection control parameters

are read in by the routine DATAININ. The element responses for the

first symmetric array position, (always closest to the center), are

computed in RESPONSE. The mean amplitude and phase responses for the

%
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selection pool are computed and stored for reference in STAT. Those

elements which are farther than a specified tolerance from the selec- S

tion pool means are permanently removed from the selection pool in

DELETE.

Routines REMOVE and OPTIMO temporarily remove unsuitable elements •

from the selection pool and search for those permutations which give

minimal values for the Kendig Terms used as the search criteria.

OPTIMO calls USET to determine the values of the Kendig Terms being an- 0

alyzed. Once such a permutation is found, the elements are assigned to

their respective array positions, and permanently removed from the se-

lection pool. If the array position just filled is the centermost po- •

sition, the chosen elements' means are computed and stored for refer- '

ence in SETK. In PREPNSET, those elements temporarily removed are now %

returned to the selection pool to be considered for the next array po-

sition. The process loops back to RESPONSE to calculate the element

responses for the next array position, and the selection process re- .

peats. Upon completion of the selection process, WRITEIT prints a map S

of the completed array, showing where each element is situated. Rou-

tines NEARINI and PERMSERIN are used to write the parameters of the

completed array into files for use by "NEARPRES" and "PERMSER".

.0wJ
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CHAPTER SIX

THE SELEC-ION PROCESS O

6.1 THE COMBINATION

As mentioned in Chapter Four, Permutation Search will look for

better permutations in the neighborhood of an initial permutation.

However, without a good starting point, the results are not always ac-

ceptable. With the Neo-Kendig method, good results can be found, but

not guaranteed. Several different combinations of two terms must be

tried in order to find an acceptable result.

Combining the Permutation Search and Neo-Kendig methods results in

a cancellation of their respective disadvantages. If the solutions ob- •

hv* 
'

tained from the Neo-Kendig method are used as initial permutations for

"PEIMSER", the results are superior to those obtained by either method

alone. Any pairing of terms 3, 4, and 8 produces results which are ac- S

ceptable initial permutations for "PERLMSER". As discussed in Chapter .£, *'.

Four, a random arrangement of elements in the permutation array gives

better results than placing elements occupying symmetric positions ad-

jacent to each other. The results of the methods described in Chapters , .

Four and Five are presented in this chapter to facilitate comparison.

Figure 6.1 shows one half of the response pattern for a 6 by 6 array

of ideal elements and a desired side lobe level of -40 dB. The shading

values are from the Dolph-Chebyshev method for line arrays [12] and the

second product theorem [13]. This map represents the response of the

%e- 4L.0, 9I
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array to a signal at any incident angle, 0, between 0* and -90* and

roll plane, , between 00 and 1800. The reference level is the re-

sponse of the array to the same signal at e = 00 and = 00 incidence.

The dB levels represesent negative decibels. A colon, (:), following

a number indicates a phase greater than 900 different from the response

at the peak of the main beam, referred to as a phase change. Figure

6.2 shows the same portion of the response pattern for a random ar-

rangement of non-ideal elements. The selection pool was the set of 66

transducers mentioned in Chapter Two. The regions of the response pat-

tern that meet the 40 dB level requirement are outlined. Note how the

locations of the phase changes have been altered significantly. Pre-

sented in Figure 6.3 is the result obtained after 17 iterations of the

Permutation Search algorithm for 0 constrained every 50 and con-

strained every 200 in the side-lobe region. This result was obtained

from a random initial permutation. There are only a few locations %

which do not meet the desired 40 dB level. In addition to the amount

of area that meets the 40 dB requirement, a good indication of the '

quality of the result is that the locations of the phase changes ap-

proximate those of the ideal case.

The same selection pool that produced the response just mentioned .

was also used by the Neo-Kendig Selection Scheme. Terms 3 and 4 were

the selection criteria. The results are shown in Figure 6.4. Again, S

the locations of the phase changes approximate those of the ideal ar-

ray. In this case, the worst response is 38 dB, only a 2 dB error.
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Finally, Figure 6.5 shows the response pattern obtained by using

the results of the Neo-Kendig method as the initial starting point for

"PERMSER". The only deviations from the desired 40 dB level are 1 dB

in magnitude and not concentrated in one area. This result was ob-

tained after 12 iterations, during which two new starts were dcne with A...

a run time of 31 cpu minutes on a VAX 11/782.

Similar results for an 8 by 8 array with three elements removed

from each corner are shown in Figures 6.6 - 6.9. The selection pool

for this array contained 140 elements and was generated as described in

Chapter Two. The shading values for the desired side lobe levels of

-40 dB were obtained by Wilson [10]. Figure 6.6 is the response for

ideal elements. Figure 6.7 is for a random arrangement of elements.

Figure 6.8 is the response pattern obtained by the Neo-Kendig method.

Figure 6.9 is the final result, obtained after 11 iterations of the

Permutation Search algorithm, three new starts, and 80 cpu minutes.

The maximum tolerance on the elements was 9% in amplitude, and lII

in phase. However, the tolerances on elements in the selection pool do

not indicate which elements will be selected. The Neo-Kendig method

will use only those elements which are close to the reference means. %

Therefore, those elements farthest from the means wiil not be selected.

But, "PERMSER' disregards an element's distance from a reference mean.

Any element may enter the array if its presence produces better re-

suits. It is possible, and has happened, that elements with large de-

viations will be placed in an array alongside elements with small 'ft

deviations.

p..
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CHAPTER SEVEN

SUMMARY AND CONCLUSIONS

7.1 SUMMARY

The goal of this thesis was to develop an element selection tech-

nique which would place elements in an array in a manner that minimizes 0

the impact of individual transducer element errors on the array's di-

rectional beam pattern. The combination of this technique and the ac-

curate measurement system developed by Schafer 121 is a powerful tool _

which can reduce costs and production time during the development of a %

transducer array.

Chapter Two discusses various aspects of the lumped-parameter 0

equivalent circuit. The correlations between the measured parameters

have been established. A preliminary set of tolerances on the measured

circuit parameters has been established, based on a measured set of 0

transducers. These tolerances indicate which circuit parameters have v. V

the most influence on an element's response.

Chapter Three discusses the mutual interaction of transducer ele-

ments in an array. The effect of incidence angle is discussed, as well

as the effects of element tolerances on the mutual interaction.

The application of Permutation Search is described in Chapter 9

Four. The control parameters and the type of results that can be ex-

pected are discussed. The Neo-Kendig selection technique is derived in

Chapter Five. It is an effective element placement technique by 0

%
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itself. When it is used as a starting point for the Permutation Search

algorithm, the results are spectacular. This combination has designed

arrays, 6 by 6 and 8 by 8, using elements with maximum tolerances of

±9% in amplitude and ±1.1 in phase, that meet a required 40 dB side

lobe level in all but a very few locations, and fail at those points by -

less than 2 dB.

7.2 FUTURE CONSIDERATIONS

Permutation Search is the most time consuming part of the entire h

placement process. A reduction of the run time, without a concurrent

loss of effectiveness or a reduction of result quality, would represent

an additional improvement of the process.

The derivation of the Neo-Kendig technique has shed light on a

mechanism that plagues the design of shading values. The use of the

Kendig Coefficients for a given array may reduce the time necessary for

developing shading values by eliminating some computations. Addition-

ally, if the shading values are considered variables, and the Kendig

Coefficients constants, the problem of achieving a desired beam pattern

becomes a set of linear equations which may be solvable by linear

programming.

The selective use of weighting may improve the effectiveness of

Permutation Search. By assigning greater weighting values at regions

in the response plane where it is more crucial that the specified side

lobe level be attained, greater control over these areas may be

achieved.

-'. - .4

F,, % -

1 1 ,, %',,'



85

,. VVb

A similar result might be achieved through the use of Fuzzy Math,

[9]. Assigning membership functions to different regions of the re-

sponse pattern would provide more information on the acceptabilty of

the current base permutation than is provided by the value of the ob-

jective function. For example, Fuzzy Math would allow the case where

achieving a response better than 40 dB in a certain region would out- .

weigh the negative effects of not achieving 40 dB in another region. 1'

Different methods of error analysis may improve both the quality

of results and run time. One example would be to minimize the maximum

error rather than the total error, as is the case in this work.

The effects of incident angle on the interactions between elements

was mentioned in Chapter Two. If the assumption of nominal phase ef-

fects could be validated, this selection process would stand on firmer

ground. For every incident angle, the mutual interactions present N

equations and N unknowns, where N is the array size. Through matrix,.

manipulation, it is possible to solve for all the interaction coeffi-

cients, and confirm or refute that assumption.

The testing of more sets of transducer elements would enable the

establishment of more reliable equivalent circuit parameter tolerances.

This, in turn, would allow more uniformity in element performance

characteristics to be achieved. With increased uniformity comes in-

creased array performance. ,--

..5". A,

L"''."

d~g ,r ,,,a,'a ,,' •,_w ,wt,,t.,s',,",.' .-",'7 '--,
"
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APPENDIX A

ARRAY PARAMETERS AND TERMINOLOGY i

The arrays considered in this study are four-fold symmetric, (or

quadrature symmetry), even and odd arrays. An odd array is one which

has an element at the center of the array, at XI = 0.0, Y1 = 0.0. An

even array has no center element. There are several parameters used to

describe these types of arrays. Accompanying this description are ex-

amples of an even and an odd array. In order to implement easily the

Neo-Kendig Selection Scheme and the Permutation Search algorithm, it

was necessary to create an array numbering system which reflects the

unique symmetry of these arrays.

The parameter M describes the number of positions in a full array, O

i.e., with no corner elements removed. The number of positions in one ,P%

quadrant is described by IM. For even arrays, IM = M/4. For odd ar-

rays, IM = (M - 1)14. IMI is the number of positions in one quadrant _ "

that will be occupied by a transducer element. If three elements are %

removed from each corner, then IMI = IM - 3. %

Each position in the array has a unique number assigned to it. 0

The array is numbered sequentially, as shown in Figures A.1 and A.2.

For the purposes of assigning shading values, each position in the

first quadrant, (and the center element in an odd array), is assigned a _

0

letter representing the appropriate shading value. Examples of shading r

values are given for desired side lobe levels of -30 dB and -40 dB. P'P

These are obtained from the Dolph-Chebyshev [12] shading values for a

line array and the second product theorem [13).

%~'
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32 31130 29 13 14 15 16 M64

28 27 26 25 9 10 11 12 IM= 16

24 23 22 21 5 6 7 8 IM1=13, if 3corner
elements are

20 19 18 17 1 2 3 4 removed

36 35 34 33 49 50 51 52 Examples of Symmetric

40 39 38 37 53 14 55 56 Array Positions

44 43 42 41 57 58 59 60 3, 19, 35, 51
4847 46 45 61162 63 64 7, 23, 39, 55 0

Shading ,,(Dolph-Chebyshev) Side lobe level "'"'""

D G J K Position -30dB -40dBC F H i A 1.0000 1.0000
B .8120 .7594

B E F G C .5187 .4178
D .2622 .1460A.6593 .5767
F .4212 .3173
G .2129 .1109
H .2690 .1746
J .1360 .0610
K .0687 .0213 .

Figure A.1

Parameters of an Even Array, 8 by 8 ';

%

I ~. NO.'=.

• . .,.. . "-'. '. % --.. ._ ,. .. . .'w" .'w
•

,1 . ." " " " ." .' ,e' ." 'er-T.', . L.
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25 22 19 16 11 12 13 M= 49 
0

24 21 18 15 8 9 10 IN=12
23 20 17 14 5 6 7 IMi = 9, if 3 corner elements23 2are removed

28 27 26 1 2 3 4 Examples of Symmetric --

31 30 29 38 41 44 47 Array Positions

34 33 32 39 42 45 48 2, 17, 26, 38

37 36 35 40 43 46 49 7,19,31,43

L-, .t

Shading
(Dolph-Chebyshev) Side lobe level

D G J K Position -30dB -40dB
C F H J A 1.0000 1.0000
B E F G .8738 .8397
A JB C D D .5683 .4793 .

E .2642 .1594F .7635 .7051
G .4966 .4025

.2309 .1338

.3230 .2297

K .1501 .0764
.0698 .0254

Figure A.2

Parameters of an Odd Array, 7 by 7

.>. ...
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The term "symmetric array position" refers to those elements, one

in each quadrant which have the relationship described in equation 5-7,

(even), or equation B-I, (odd). In the even array, (this holds true

for the odd array as well), the symmetric array position numbers are

arithmetically separated by the value of IM. For example, for the 8 by

8 array in Figure A.I, positions 2, 18, 34, and 50 are symmetric.

Their arithmetic differences are 16, which is 1M for an 8 by 8 array.

All symmetric array positions have the same shading values.

'- p
qd

S

.. .

%
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APPENDIX B 0

THE ADJUSTMENT TO NEO-KENDIG FOR ODD ARRAYS R

There are two types of symmetry present in an odd array. Consider -

the first two quadrants of positions in an odd array. 
,-

4!z .' .

25 22 19 16 11 12 13
24 21 18 15 8 9 10
23 20 17 14 5 6 7

1 2 3 4

Figure B.1 -U.'.

First Two Quadrants of an Odd Array

The first type is reflective in nature. Position 6 is symmetric about

the y-axis with position 20.

(X2 0 ,Y20 ) = (-X6 ,Y6 ) (B-I)

Those positions which do not lie along the axes of the array have three

other symmetric positions, for a total of four. However, difficulties_:'

arise with this type of symmetry when considering position 16. Since

it lies along one of the axes, (the y-axis in this case), there is only

one other position symmetric with it.

-% -%
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The other type of symmetry present is rotational. Position 6 is

symmetric with position 18 through a 90 ° rotation about the origin.

The symmetry is such that the x and y coordinates are interchanged,

viz.,

(X1 8 ,Y18 ) = (-Y6 ,X6). (B-2)

',?'.d.'
Note that the arithmetic relationship between these two positions is

the same as between two symmetric positions in an even array, i.e.,

18 - 6 = 12, which is IM for a 7 by 7 array. Figure B.2 is the odd

array equivalent of Figure 5.2.

Since the Neo-Kendig Selection Scheme takes advantage of the

unique symmetry of an even array, it would be advantageous to extend

the selection scheme to odd arrays with as little change as possible.

A selection scheme for odd arrays based on the first type of symmetry

would not resemble the scheme for even arrays since there are positions ,
.. " -'l

which are not four-fold symmetric. The second type of odd symmetry

more closely resembles the even symmetry of Chapter Five. It is this

type of symmetry which is used for odd arrays.
N., %

Paralleling the derivation of Chapter Five, equation B-3 is the

odd array form of equation 5-7.

U1 = Xl-ucos + Yl-usin U 3 = -Xl'ucOs - Ylpusin
(B-3)

U 2 = -Yl.ucOs + Xl-usin U4 = +Ylucos - Xl'usin

Therefore,

U1 = -U3  U2 = -U4  (B-4)

is the same as for an even array.
-. ,-A_,/,,
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(-y, x) (x, y).....%.

, ~

(-x, -y) (y, -X) : .
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Figure B. 2 S

Four Symmetric Positions of an Odd Array-''''".,
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The difference between an even and an odd array shows up in the *.

odd array equivalent of equations 5-4 and 5-5, which represent the Ken- .

dig Coefficients. Since the coefficients do not affect the selection Fle

process, the rest of the derivation is not presented. e

The Neo-Kendig Selection Scheme for even arrays, outlined in Chap-

ter Five, can be applied, with a small modification to deal with the

center element, directly to odd arrays.

The Neo-Kendig technique is based on the inherent 
symmetry of the S

arrays considered. If an array with a different type of symmetry is

considered, the results of Chapter Five are not applicable. However, a

similar derivation, reflecting the different symmetry, would yield a

Neo-Kendig technique for that symmetry. The derivation is straight-

forward and not lengthy.

% I

. % 5,.,l
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APPENDIX C 
.

KENDIG COEFFICIENTS AND ARRAY RESPONSE 
% ..

The Dolph-Chebyshev [121 method is a well known technique used to -

determine the shading values to give an optimally narrow beam width for

a specified uniform side-lobe level for line arrays. The second pro-

duct theorem [13] extends this result to planar arrays. However, the

shading values for other types of response patterns are not generated

as easily. Computer routines which use linear and goal programming

techniques can be used to generate these values [101, [111.

The use of these programs has revealed a curious phenomenon. Con-

straining a certain area of the response pattern to a very low side- .'

lobe level will result in an increase in side-lobe level at another

area in the response pattern, resembling that which happens to a water

balloon when pushed in at one point; it bulges out at another point.

The following is a description of the mechanism for this phenomenon, as %

enlightened by the Neo-Kendig coefficients.

Without loss of generality, the following assumptions can be made.

1) Only ideal elements are considered.
2) There is no phase shading.
3) k = 1.0. •

Term 1 is the only non-zero Kendig Term. For a 6 by 6 array and an in-

cident angle of 7 = 750 and 8 = 450 , the Kendig Coefficients for each

- -.
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symmetric position are shown in Figure C.I. Each of the coefficients d'. %A

for the symmetric positions is multiplied by four times the shading i

value for that position, (once for each quadrant). The response of the %

array is twenty times the logarithm, base 10, of the sum of these pro-

ducts over the symmetric positions with the main beam response as the

reference level. If it is assumed, for example, that the response at

this incident angle is very low, i.e., a null, the sum of these pro-

ducts over all the symmetric positions is small. The logarithm of a

small number, < 1, is a negative number, and in this case, represents

the dB down from the main beam response.

At a different incident angle, = 50 and 0= 60", which is not in

the neighborhood of the first, the Kendig Coefficients at each sym-

metric position will have different values, (Figure C.2). Therefore,

the sum of the products at the second angle will not be the same as the 0

sum for the first angle. If the first sum was very small, i.e., near

zero, this second sum will be, in most cases including this example, 04

greater than the first. The logarithm of this larger sum will result -•

in a response level which is not as low as for the smaller sum.

This explains why driving the response to a very low level in one ,-" * ,

region of the response plane may degrade the response in another re- ,

gion.
.. .,-.

%

S. %

.. 'A

6".,.

*. . *'

• . . . . .,,.. .. - . ,. ..-. . ,¢.'.".'..'"..','.. .' ,'.,.,~ it'
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F. C..

PHIK= 750  THETA= 450  7-ucos=. 1830 usin=. 6830 k =1,-:--....,. ,

PP,

A . .

2.5 -.1357 -.1312 -.1223 !

1.5 .5232 .5001 .4661 ;

• " , " p.2-

y= 5 .9383 .9070 .8454 I.""

II I S
x =.5 1.5 2.5 "

~~Figure C.I1;"

Kendig Coefficients for 6 = 450, = 750 - -.

, 4',,- ',

-.1,i
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x=~ .5 1.5 2.

... -v,

%

ucos=. 8627 u sin=. 07 55 k=

,,2.5 .8923 .2684 -. 5432

1. 5 .9026 .2715 -. 5495 ,

Figure C. 2
y e. 5 .9078 .2730 -. 5526,

x=.5 1.5 2.5 '.

Figure C. 2 S

KediCeficens ore, 60, m 5

: S:.:(

,~~", S.'-
:-',,-3."

r ":":"::

." 
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APPENDIX D

LISTING OF PERMUTATION SEARCH COMPUTER PROGRAM

C PERMSER *

C PERMUTATION SEARCH COMPUTER ALGORITHM *

C WRITTEN BY KING W. WIEMANN *

COMON/COMMO2/ Y
COMMON/COMM03/ RER, IMR,RERR
COMMON/CONMO4/ K,M,AK

COMMON/COMM05/ IEV *,

COMMON/COMMI I/ NACH,NPRIOR,NOBJ

COMMON/COMMI 2/ ZBEST
COMMON/COMMI7/ MM,NPOOL,IJ
DIMENSION ZBEST(IO),Y(3000),IMR(200),Z(10). . ,.

INTEGER RER(200),RERR(200)
CALL DATAINN

C DETERMINE THE INITIAL ACHIEVEMENT LEVEL.

CALL ZVALUE(Z)
DO 10 KK=I,NPRIOR

ZBEST(KK)=Z(KK)

10 CONTINUE
C WRITE THE INITIAL VALUES OF THE SEARCH.

WRITE(4,500)

500 FORMAT(IX,'THE INITIAL PERMUTATION IS'//5X,'ELEMENT NUMBER',5X,
1' POSITION' )
DO 600 II=1,IJ

WRITE(4,501) RERR(RER(II)),IMR(II)
501 FORMAT(TIl,13,T26,I3)

600 CONTINUE 1.
WRITE(4,507) NACH

507 FORMAT(IX,'THE NUMBER OF OBJECTIVES IS',2X,16)
WRITE(4,502)

502 FORMAT(IX,'THE INITIAL ACHIEVEMENT VECTOR IS'//5X,'PRIORITY LEV
IEL' ,3X, 'ACHIEVEMENT')
DO 601 II=I,NPRIOR

WRITE(4,503) II,ZBEST(II)
503 FORMAT(9X,I2,13X,FIO.4) 0
601 CONTINUE

C BEGIN THE SEARCH BY CALLING SUBROUTINE PERMUTE.

CALL PERMUTE(&100,&200,&300)
C WHEN THE SEARCH ROUTINE IS TERMINATED, CONTROL RETURNS TO THE MAIN

C ROUTINE WITH A VALUE OF KKI, INDICATING THE DEGREE OF SUCCESS.
C KKI=l IS WHEN A COMPLETE CYCLE OF PERMUTATIONS HAS BEEN COMPLETED
C WITHOUT AN IMPROVEMENT.

tO0 KKI=1

~3 ~ ~ *~ 'i'.i,4L* i
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GOTO 1.10
C KKI=2 IS WHEN THE NUMBER OF CYCLES EQUALS THE MAXIMUM NUMBER OF
C ITERATIONS, MAXITE.
200 KKI=2

GOTO 110
C KK1=3 IS WHEN THE ACHIEVEMENT VECTOR EVALUATES TO ZERO, e.g. ALL
C THE OBJECTIVES HAVE BEEN COMPLETELY SATISFIED. P'

300 KK1=3
110 CALL WRITE(KKI)

STOP
END

SUBROUTINE PERMUTE(*,*,*) .( .

C THIS ROUTINE CONTROLS THE EXCHANGE OF ADJACENT ELEMENTS IN THE :el

C PERMUTATION ARRAY.
C K IS THE PERMUTATION INDEX DURING EACH PASS THROUGH THE PERMUTATION.
C ARRAY. IEV=1 IS THE INDICATOR OF SUCCESS OF EACH TRIAL POINT.
C L INDICATES THE NUMBER OF PASSES THROUGH THE PERMUTATION ARRAY. I

COMMON/COMM03/ RER, IMR,RERR
COMMON/COMM04/ K,M,AK
COMMON/COMM05/ IEV
COMMON/COMM06/ MAXITE
COMMON/COMM12/ ZBEST
COMMON/COMM15/ L,KK
COMMON/COMM16/ NPRINT, NCOUNT
COMMON/COMM17/ MM,NPOOL,IJ
COMMON/COMMI8/ LSEED, ZLOLIM
DIMENSION S(200), IMR( 200),ZBEST(10)
INTEGER RER(200),S,P,RERR(200),Pl,RERRT(200)
KK= 1
IEV= 1
L= 1
S(L)=O

C THE FIRST EXCHANGE
1 P=RER(KK) I : ,

RER(KK)=RER(KK+I)
RER(KK+l )=P
CALL EVAL(&1O,&200)

10 KK=KK+ 1IF(IEV.EQ.1) S(L)=S(L)+1

IF(KK.EQ.IJ) GOTO 100
IF(IEV.EQ.1) GOTO 50

C IF THE PREVIOUS EXCHANGE RESULTED IN NO IMPROVEMENT, THE PREVIOUS BASE
C POINT IS RETURNED TO BEFORE THE NEXT EXCHANGE IS EFFECTED.

P=RER(KK-1) .
RER(KK-1 )=RER(KK)
RER(KK)=RER(KK+I)
RER(KK+ I)=P % %
CALL EVAL(&10,&200)

C IF THE PREVIOUS EXCHANGE RESULTED IN A NEW BASE POINT, THE NEXT
C EXCHANGE IS FROM THE NEW BASE POINT.

I 1
%, - -
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100

50 P=RER(KK)

RER(KK)=RER(KK+I)
RER(KK+ I)=P
CALL EVAL(&10,&200),f

C IF THE EXCHANGE BETWEEN THE LAST TWO ELEMENTS RESULTS IN NO NEW
C BASE POINT, THE PREVIOUS BASE POINT IS RETURNED TO. A.
100 IF(IEV.EQ.1) GOTO 120

P=RER(KK-1)

RER(KK-I )=RER(KK)
RER(KK)=P

120 L=L+1
IF(L.GT.MAXITE) GOTO 175
IF(S(L).EQ.S(L-1)) GOTO 150
KK= 1

GOTO 1
C IF A COMPLETE CYCLE OF PERMUTATIONS HAS NOT BEEN SUCCESSFUL 

.

150 IF(L.NE.2) GOTO 152
C IF THE PERMUTATIONS FROM THE INITIAL BASE POINT DO NOT RESULT IN
C ANY IMPROVEMENTS;

WRITE(4,501) .___

501 FORMAT(IX,'THERE IS NO IMPROVEMENT ON THE INITIAL PERMUTkTION')
C IF THE BEST SOLUTION IS NOT LESS THAN ZLOLIM, A NEW START IS
C INTIATED. THIS ROUTINE IS CALLED ONLY 6 TIMES. THE SIXTH
C CALL CAUSES THE PROGRAM TO TERMINATE.
152 IF(ZBEST(1).GT.ZLOLIM) CALL NEWSTART(&160)

RETURN 1

160 IF(NPRINT.NE.1) GOTO 503
WRITE(4,502)

502 FORMAT('OA NEW SEARCH PATTERN IS NOW BEING USED.'/' THE ELEMENTS A ,. N
IRE IN THE FOLLOWING POSITIONS;'/5X,'ELEMENT NUMBER',5X,'POSITION N

2UMBER') 4,

*DO 503 II=1,IJ

WRITE(4,504) RERR(RER(II)),IMR(II)

504 FORMAT(T11,13,T26,13)
5 0 3 C O N T I N U E .PA " "

KK=I
GOTO I

C IF THE MAXIMUM NUMBER OF PERMUTATIONS HAVE BEEN PERFORMED.
175 RETURN 2 S

C IF THE ACHIEVEMENT VECTOR HAS ZERO VALUE FOR ALL LEVELS.

200 RETURN 3
END

SUBROUTINE NEWSTART(*)
C THIS SUBROUTINE EFFECTS A NEW START, KEEPING THE ELEMENTS

C IN THE SAME TRANSCUCER ARRAY POSITIONS, BUT REARRANGING THE .-.

C PERMUTATION ARRAY.
DIMENSION IMR(200), NN(200), IMRR(200) ,

INTEGER RER(200) ,RERT(200) "

COMMON/COMM03/ RER, IMR,RERR
COMMON/COMM04/ K,M,AK,0

COMMON/COMM16/ NPRINT,NCOUNT

I 

A
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COMMON/COMMI7/ MM,NPOOL,IJ
COMMON! COMM18 / LSEED ,ZLOLIM
DATA NCOUNT/O/ 6
IF(NCOUNT.GT.4) RETURN
NCOUNT=NCOUNT+ 1
DO 10 II=l,IJ
NN( II)=O

10 CONTINUE
LL= 1
ITER=O

1 ITER=ITER+1

Y=FLOAT( IJ)*RAN(LSEED)+1 .0
NNI1=INT (Y)
IF(LL.NE.1) GOTO 21 l
NN( LL) =NNL
LL=LL+ 1
GOTO I

21 IF(ITER..GT.10*IJ) GOTO 92
DO 22 I=l,LL
IF(NNL.EQ.NN(Il)) GOTO I '.

22 CONTINUE
NN( LL) =NN1
LL=LL+l
IF(LL.GT.IJ) GOTO 94
GOTO I

92 ITER=5*IJ
GOTO 1I

94 DO 30 II=1,IJ
IIRR(II)=IMR(NN(II)) %v
RERT(II)=RER(NN( II))

30 CONTINUE
DO 40 II=1,IJ V'
RER( II)=RERT( II)
IMR(II).=IMRR(II) o

40 CONTINUE
RETURN I
END

SUBROUTINE EVAL(*,*)
C THIS ROUTINE DETERMINES IF THE CURRENT TRIAL POINT GIVES A BETTER
C RESPONSE THAN THE CURRENT BASE POINT. IF IT DOES, THE TRIAL POINT
C BECOMES THE NEW BASE POINT.
C THIS ROUTINE, WITH ZVALUE, AND SOME OF THE VARIABLE NAMES
C ARE FROM CHARLES ALVORD'S DOCTORAL THESIS.

COMMON/COMMO4/ K,M,AK 0
COMMON/COMMO5/ IEV
COMMON/COMMI 1/ NACH,NPRIOR,NOBJ
COM.MON/COMMI2/ ZBEST IK
COMMON/COMMI5/ L,KK
COMMON/COMMI6/ NPRINT, NCOUNT
DIMENSION ZBEST( 10) ,Z( 10)
CALL ZVALUE(Z)

Net
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58 CONTINUE
C EVALUATION BY COMPARISON TO THE BEST BASE POINT THUS FAR.
21 DO 20 JJ=1,NPRIOR

IF(Z(JJ).GT.ZBEST(JJ)) GOTO 50
IF(Z(JJ)+.ooo.LT.ZBEST(JJ)) GOTO 30

20 CONTINUE
C THE TRIAL POINT RESULTS IN AN EQUAL REPONSE TO THE CURRENT BASE POINT.

IEV-0 /

GOTO 50
C THE TRIAL POINT RESULTS IN A BETTER RESPONSE.
30 DO 35 JJ=I,NPRIOR

IF(Z(JJ).NE.O.0) GOTO 40
35 CONTINUE
C IF ALL THE OBJECTIVES HAVE BEEN SATISFIED.

GOTO 60
C INTITIALIZE THE NEW BASE POINT.
40 DO 45 JJ=I,NPRIOR

ZBEST(JJ)=Z(JJ)
45 CONTINUE

IEV=-
IF(NPRINT.NE.1) GOTO 600
WRITE(4,500) L,KK

500 FORMAT('OA NEW BASE POINT HAS BEEN FOUND.'/' THE SUCCESSFUL PERMUT
IATION OCCURRED DURING CYCLE #',12,' AND AT PERMUTATION POSITION',I
23/IX, 'THE ACHIEVEMENT VECTOR IS'//5X, 'PRIORITY LEVEL' ,3X, 'ACHIEVEM
3ENT')
DO 600 II=I,NPRIOR
WRITE(4,501) II,ZBEST(II)

501 FORMAT(8X,14,8X,FIO.4)
600 CONTINUE

RETURN 1
50 IEV=0

RETURN I
C CONTROL RETURNS TO PERMUTE INDICATING THAT ALL THE OBJECTIVES HAVE
C BEEN SATISFIED.

60 RETURN 2
END

SUBROUTINE ZVALUE(Z)
C THIS ROUTINE DETERMINES THE LEVEL OF ACHIEVEMENT OF THE OBJECTIVES.

COMMON/COMO2/ Y
COMMON/COMMIl/ NACH,NPRIOR,NOBJ
COMMON/COMM12/ ZBEST
COMMON/COMMI3/ SIGN,IROW,WEIGHT,RHS,MPRI
DIMENSION Y(3000),ZBEST(1O),Z(10),SIGN(2000),IROW(2000)
DIMENSION WEIGI{T(2000) ,RHS( 2000),MPRI(2000)
CALL YVALUE
DO 10 KK=I,NPRIOR
Z(KK)=O.O

10 CONTINUE
DO 20 KK=I,NACH
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IF(SIGN(KK).LT.O.0) GOTO 40

DEV=Y( IROW(KK) )-RHS(IROW(KK))

GOTO 50
40 DEV=RHS(IROW(KK) )-Y(IROW(KK))

50 IF(DEV.LT.0.0) DEV=0.0
Z(MPRI(KK) )=Z(MPRI(KK) )+WEIGHT(KK)*DEV

20 CONTINUE

RETURN
END

SUBROUTINE DATAINN

C THIS ROUTINE READS IN THE TRANSDUCER ARRAY PARAMETERS.
C THERE ARE 2 MAIN LOOPS TO READ IN THE DATA, ONE FOR SYMMETRIC
C AND ONE FOR NON-SYMMETRIC

C IF THE ARRAY IS FOUR-FOLD SYMMETRIC, THERE
C ARE 2 ALTERNATE WAYS TO INPUT THE DATA, DEPENDING ON THE EXISTENCE
C OF AN ARRAY POSITION AT X=OY=O.

COMMON/COMMO/ IM,NEVEN, NROUTE
COMMON/COMMO3/ RER, IMR, RERR
COMMON/COMMO4/ K,M,AK
COMMON/COMM06/ MAXITE S
COMMON/COMM08/ C,D

COMMON/COMMI 0/ A,AMP,ALPHA
COMMON/COMM14/ DOLAM,WAVE

COMMON/COMMI6/ NPRINT,NCOUNT
COMMON/COMM17/ MM,NPOOL,IJ
COMMON/COMMI8/ LSEED,ZLOLIM S
DIMENSION A(200),AMP(200,200),ALPHA(200,200),C(200),D(200),IMR(200)

INTEGER RER(200),RERR(200)
DATA D2RAD/1.74532925 E-02/
RAD2D=1.00OO/D2RAD

READ(3,499) DOLAM,WAVE
READ(3,500) M,MAXITE,NROUTE,NPRINT,NPOOL S
IF(NPOOL.EQ.1) READ(3,506) MM

PI=4.0*DATAN( I .ODOO)

AK=2*PI*DOLAM
C IF NROUTE.NE.1, THE ARRAY IS ASSYMMETRIC; IF NROUTE.EQ.1, THE ARRAY
C IS SYMMETRIC.

IJM
IF(NPOOL.EQ.1) IJ=MM

IK=IJ
IF(NROUTE.EQ. 1) THEN ., *

READ(3,504) NEVEN,IM
C IF THE ARRAY IS 'ODD', (i.e. THERE IS AN ELEMENT AT THE CENTER OF THE

C ARRAY X=O,Y=O), THE PARAMETERS ARE READ IN DIFFERENTLY FOR A EVEN
C ARRAY. NEVEN.EQ.1 IS AN ODD ARRAY.

IF(NEVEN.EQ. 1) THEN
IK=IM+I 1

C COORDINATES OF THE CENTER ELEMENT AND THE SHADING VALUE ARE READ IN '"' -

C FIRST.
READ(3,502) C(1),D(1),A(1) 0

C THE COORDINATES AND SHADING VALUES FOR THE SYMMETRIC POSITIONS ARE

S.
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C READ IN.
DO 13 II=2,1K
READ(3,502) C(II),D(II),A(II)

C THE ENTIRE ARRAY VALUES ARE INITIALIZED USING THE EVEN SYMMETRY.

C( II+IM)=-D(II)
D(II+IM)=C(II)
C(II+2*IM)=-C(II)
D( II+2" IM) =-D( II)

C(II+3*IM)=D( II)
D(II+3*IM)=-C( II)
A(II+IM)=A(II)

A(II+2*IM)=A(II)
A(II+3*IM)=A( II)

13 CONTINUE
C IF THE ARRAY IS EVEN.
C THE COORDINATES AND SHADING VALUES OF THE SYMMETRIC POSITIONS ARE
C READ IN. THEN THE ENTIRE ARRAY VALUES ARE INITIALIZED ACCORDING
C TO THE EVEN SYMMETRY.

ELSE
12 IK=IM

DO 17 11=1,IK
READ(3,502) C(II),D(II),A(II)
C(II+IM)=-C(II)

C(II+2*IM)=-C(II)
C( II+3*IM)=C( II)
D(II+IM)=D(II)
D(II+2*IM)=-D(II)

D(II+3*IM)=-D(II)
A(II+IM)=A(II)
A(11+2*IM)=A(II)
A(II+3*IM)=A(II)

17 CONTINUE

ENDIF
C IF THE ARRAY IS NOT 4-FOLD SYMMETRIC THE COORDINATES, AND SHADING

C VALUES OF THE ENTIRE ARRAY ARE READ IN.

ELSE
11 DO 10 II=1,IJ V.

READ(3,502) C(II),D(II),A(II)

10 CONTINUE
ENDIF

C IF THERE ARE ELEMENTS IN THE 'POOL', THEIR EQUIVALENT ARRAY POSITION
C AND SHADING VALUES MUST ALSO BE SPECIFIED, (i.e. SET EQUAL TO ZERO.)

14 IF(NPOOL.NE.1) GOTO 22
DO 21 II=M+I,MM
C(ii)=o.o
D(II)=O.O
A(II)=O.O

21 CONTINUE
C ELEMENT TOLERANCES ARE READ IN IDENTICALLY FOR ALL LOOPS.
C THE OUTER LOOP CONTROLS INPUT ACCORDING TO ELEMENT, THE INNER

0#
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C ACCORDING TO POSITION.
22 IF(NROUTE.NE.1) THEN -?

DO 20 II=1,IJ
READ(3,506) RERR(II)
DO 20 JJ=1,IK
READ(3,503) AMP(II,JJ),ALPHAI

C CONVERT TOLERANCES FROM DEGREES TO RADIANS.
ALPHA( II ,JJ)=ALPHA1*D2RAD

20 CONTINUE
ELSE

DO 27 II=1,IJ -

READ(3,506) RERR(II)
DO 28 JJ1I,IK
READ(3,503) AMP(II,JJ),ALPHA1
ALPH.A" II, JJ)=ALPHAI*D2RAD

C SINCE THE RESPONSE OF AN ELEMENT WILL BE THE SAME FOR
C ANY OF THE FOUR SYMMETRIC POSITIONS, ARRAY POSITION MUST BE
C INITIALIZED.

IF(NEVEN.EQ.1.AND.JJ.EQ.1) GOTO 28
AMP(II ,JJ+IM)=AMP(II,JJ)
AMP( II ,JJ+2*IM)=AMP(II,JJ)
AMP(II ,JJ+3*IM)=AMP(II ,JJ)
ALPHA( II,JJ+IM)=ALPHiA( II,JJ)
ALPHA( II,JJ+2*IM)=ALPHA( II,JJ)
ALPHA( II ,JJ+3*IM)=ALPHA( II ,JJ)

28 CONTINUE
DO 27 KK=4*IM+1,,MM
AMP(II,KK)=O.O
ALPHA(II,KK)=O.O

27 CONTINUE *

ENDIF
C READ IN THE STARTING POSITIONS FOR EACH ELEMENT.

DO 40 JJ=1,IJ
READ(3,504) IMR(JJ),RER(JJ)

40 CONTINUE
42 CALL GOALIN

READ(3,505) LSEED,ZLOLIM.
CALL NEARIN *d

499 FORMAT(2F9.5)
500 FORMAT(5I5)
502 FORMAT(3F9.5) I*w

503 FORMAT(2F9.5)
504 FORMAT(2I5)
505 FORMAT(1O,F9.4)
506 FORMAT(I5)

RETURN
END

SUBROUTINE GOALIN
C THIS ROUTINE READS IN MATH PROGRAMMING PARAMETERS, SUCH AS THE

C THETA AND PHI ANGLES THAT ARE CONSTRAINED.0

r- r r d 'V ~ . . . .- - - ----------------- - r .-
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C THE GOAL PROGRAMMING PARAMETERS, SUCH AS THE RHS VALUES, THE
C WEIGHTS, AND SIGN OF THE DEVIATION VARIABLES ARE ALSO INPUT
C HERE.

COMMON/COMMO7/ THETA, DELTHE
COMMON/COMMO9/ PHI, NPHI N

COMMON/COMMI 1/ NACH,NPRIOR,NOBJ 
Y

COMMON/COMM13/ SIGN, IROW,WEIGHT,RHS,MPRI
DIM4ENSION RHS(2000),SIGN( 2000) ,IROW(2000),WEIGHT( 2000)
DIMENSION MPRI(2000) ,THETA( 100) ,PHI(40)
DATA RAD2D/57.2958/,D2RAD/1.74532925 E-02/

C READ IN THE PHI ANGLES CONSTRAINED.
READ(3,99) NREADI

99 FORMAT(13) ?

IF(NREADL.EQ.1) THEN
READ(3,99) NPHI
DO 103 II=1,NFHI
READ(3,101) PH12 Ab
PHIC II)=PHI2*D2RAD

103 CONTINUE
ELSE

READ(3,100) PHI1,DELPHI
TEM=(360.O-PH11)/DELPHI
NPH I=TEM

TEM1=INT(TEM)/2
IF(TEM4/2.O.NE.TEMI) NPHI=TEM41.O 0
PHI( 1)=PHI1*D2RAD
DELPHI=D' 211*D2RAD
DO 11 II=2,NPHI
PHI(II)=PHI( 1)+(II-1)*DELPHI

11 CONTINUE
ENDIF
READ(3,1O1) DELTHE
NACH=O

C READ IN THE THETA VALUES CONSTRAINED FOR EACH PHI.
DO 10 II=1,NPHI
READ(3,1O1) THETA(II)

C SUM OVER ALL ANGLES CONSTRAINED TO DETERMINE THE NUMBER
C OF OBJECTIVES.

NACH=NACH+( 90. O-THETA( II) )/DELTHE+1
THETA( II)=THETA( II)*D2RAD

10 CONTINUE
C CONVERT DEGREES TO RADIANS.

DELTRE=DELTHE*D2RAD ~.,
NOBJ=NACH
READ(3,102) NSTED

C (NSTED.EQ.1) MEANS THAT SIGN,WEIGI{T,MPRI,RHS ARE ALL THE SAME FOR EACH
C OBJECTIVE.

IF(NSTED.NE. 1) THEN
C READ IN THE VALUES FOR EACH OBJECTIVE.

READ(3,102) NPRIOR
DO 30 II=1,NOBJ 0
READ(3,104) MPRI(II),WEIGHT(II),IROW(II),SIGN(II),RHS(II) Zw
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30 CONTINUE
ELSE

C READ IN THE SIDE LOBE LEVEL AND SPECIFY ALL THE OTHER VALUES

NPRIOR= 1

READ(3,101) RHSI ON
DO 60 JJ=I,NOBJ
MPRI(JJ)=I

WEIGHT(JJ)=1
SIGN(JJ)=-1.0

RHS(JJ)=RHS1
IROW(JJ)=JJ

60 CONTINUE

ENDIF
100 FORMAT(2F8.4)
101 FORMAT(F8.4)

102 FORMAT(12)
104 FORMAT(I2,F8.4,14,2F8.4)

RETURN
END

SUBROUTINE WRITE(KK1) .
C THIS ROUTINE IS CALLED ONLY AFTER THE SEARCH HAS BEEN TERMINATED. IT S
C WRITES OUT ALL PERTINENT DATA BASED ON THE RESULTS OF THE SEARCH. -

COMMON/COMMO 1/ IM, NEVEN, NROUTE
COMMON/COMM03/ RER, IMR, RERR
COMON/COMM04/ K,M,AK
COMMON/COMMO5/ IEV
COMMON/COMMI 0/ A,AMP,ALPHA 0
COMMON/COMMI I/ NACH,NPRIOR,NOBJ

COMMON/COMM12/ ZBEST
COMMON/COMMI5/ L,KK
COMMON/COMMI6/ NPRINTNCOUNT
COMMON/COMM17/ MMNPIOOL,IJ T
DIMENSION IMR(200),AMP(200,200),ALPHA(200,200),ZBEST(10) ,A(200)
INTEGER RER(200) ,RERR(200)
DATA D2RAD/1.74532925 E-02/ "

RAD2D=1.0000/D2RAD -. _.,
C KKI INDICATES THE SUCCESS OF THE SEARCH.
C THE RESULIS ARE PRINTED ACCORDING TO THE SUCCESS OF THE SEARCH.

GOTO(10,20,30),KK1 S
C IF A COMPLETE CYCLE OF PERMUTATIONS HAS BEEN COMPLETED AND *'- ...

C NO IMPROVEMENTS WERE MADE.
10 WRITE(4,100)
100 FORMAT(OX,'A COMPLETE CYCLE OF PERMUTATIONS HAS BEEN MADE WITHOUT

I ANY'/IX,'IMPROVEMENTS ON THE PREVIOUS BASE POINT.'/)
GOTO 50

20 WRITE(4,200)
200 FORMAT( IX,'THE MAXIMUM NUMBER OF CYCLES OF THE PERMUTATION ALGORITH

IM HAVE BEEN COMPLETED.')
GOTO 50

30 WRITE(4,300)
300 FORMAT(' THE ACHIEVEMENT FUNCTION IS 0.0. ALL THE OBJECTIVES HAVE S

, .. ,

* * -~
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IBEEN SATISFIED'/) "01

GOTO 60 
%.

50 IF(NPRINT.EQ.1) GOTO 51

WRITE(4,111) L,NCOUNT 6
Ill FORMAT(' THE NUMBER OF CYCLES COMPLETED IS ',12,'. THE NUMBER OF

INEW SEARCH PATTERNS USED IS ',12,'.') "0

51 WRITE(4,101)

101 FORMAT(1X,'THE ACHIEVEMENT FUNCTION IS'/TI5,'PRIORITY LEVEL',5X,'A
lCHIEVEMENT')

DO 1 II=1,NPRIOR
WRITE(4,102) II,ZBEST(II)

102 FORMAT(TI7,I2,T33,F12.2)
1 CONTINUE

60 WRITE(4,103)
103 FORMAT(IX,'THE ELEMENTS ARE IN THE FOLLOWING POSITIONS'/5X,'ELEMEN

IT NUMBER',5X,'POSITION NUMBER')

DO 2 II=l,IJ N'-'
WRITE(4,104) RERR(RER(II)),IMR(II)

104 FORMAT(T11,I3,T30,13)

2 CONTINUE

C
C THIS WRITES THE ELEMENT TOLERANCES INTO THE FILE CREATED BY THE

C SUBROUTINE NEARIN, SO THAT NEARPRES CAN READ THAT FILE DURING
C EXECUTION. THE PORTION OF THE FILE WRITTEN HERE IS THE BEST SOLUTION

C FOUND BY THE PERMUTATION SEARCH ALGORITHM.
C
500 DO 601 II=1,IJ

WRITE(2,602) IMR(II)

601 CONTINUE
602 FORMAT(14)

DO 600 II=I,IJ - ,

WRITE(2,700) AMP(RER(II),IMR(II)),ALPHA(RER(II),IMR(II))*RAD2D

700 FORMAT(F9.5,',',F9.5)

600 CONTINUE
900 WRITE(2,403)
403 FORMAT('O')

RETURN

END

SUBROUTINE YVALUE .
C THIS ROUTINE DETERMINES THE RESPONSE OF THE ARRAY FOR EACH THETA AND

C PHI THAT IS CONSTRAINED, AS MEASURED AGAINST THE MAIN LOBE RESONSE.
COMMON/COMMO 2/ Y
COMMON/COMM03/ RER, IMR,RERR
COMMON/COMMO4/ KMAK
COMMON/COMM07/ THETA, DELTHE

COMMON/COMMO8/ C,D
COMMON/COMM09/ PHI,NPHI
COMMON/COMMI0/ A,AMP,ALPHA
COMMON/COMMI7/ MM,NPOOL,IJ

COMMON/COMM19/ DNORM

."-A
.5.-- S.,
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DIMENSION IMR(200),Y(3000),C(200),D(200),A(200),AMP(200,200)

DIMENSION ALPHA( 200,200),PHI(40),THETA( 100)
INTEGER RER( 200)
DATA RAD2D/57.2958/,D2RAD/1.74532925 E-02/ a

REAL*8 SUMR,SUMI,DCOSDSIN,U
C ZZ1 REPRESENTS THE RESPONSE OF THE MAIN BEAM. ZZ IS THE RESPONSE AT A
C SPECIFIC THETA AND PHI. ZZI-ZZ REPRESENTS THE DIFFERENCE (IN dB )
C BETWEEN THEM.

CALL INITIALIZE(ZZ1)
KK=OI= I-

DO 50 JJ=1,NPHI -
C EACH THETA(I) REPRESENTS THE THETA ANGLE WHERE THE SIDE LOBE STARTS.
C FOR EACHI PHI CONSTRAINED.

N THETAi=THETA(I)
11 SUMR=O. 0

SUMI=O.0

USIN=SIN(THETA1)*SIN(PHI(JJ))
UCOS=SIN(THETAI)*COS(PHI(JJ))

C SUM OVER ALL THE ELEMENTS TO DETERMINE THE RESPONSE OF THE ARRAY.
DO 20 II=l,IJ
IF(A(IMR(II)).EQ.0.0) GOTO 20 •
Ul=C(ltMR(II))*UCOS
U2=D( IMR(II) )*USIN

U=DBLE(AK*(UI+U2)+ALPHA(RER(II) ,IMR(II)))
H=A(IMR(II))*AMP(RER(II),IMR(II))

SUMR=SUMR+H*DCOS(U)
SUMI=SUMI+H*DS IN(U) 0

20 CONTINUE

KK=KK+I"'
AMPL=SNGL( SUMR*SUMR+SUMI* SUMI)
AMPL=SQRT(AMPL)
SAMP=AMPL/DNORM

IF(ABS(SAMP).GT.I.0592E-5) THEN
ZZ=20*ALOGIO(SAMP)

ELSE
13 ZZ=-99.0

ENDIF
C SUBTRACT THE SIDE LOBE RESPONSE FROM THE MAIN BEAM RESPONSE.
C THIS GIVES THE VALUE OF THE LEFT HAND SIDE OF THE OBJECTIVE. 0
14 Y(KK)=ZZI-ZZ

C INCREMENT THE THETA ANGLE.

THETAI=THETAI+DELTHE
C IF THETA EXCEEDS 90.0 DEGREES, INCREMENT THE PHI ANGLE.

IF(THETAI*RAD2D.GT.90.0) GOTO 45
GOTO 11 0

C INCREMENT THE PHI ANGLE AND THE THETA ANGLE INDEX, I.
45 I-I+l.
50 CONTINUE

C IF THE PHI ANGLE EXCEEDS 360.0 DEGREES, THE RESPONSE AT ALL
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C CONSTRAINED ANGLES HAS BEEN DETERMINED.
RETURN
END

SUBROUTINE INITIALIZE(ZZI)
C THIS SUBROUTINE DETERMINES THE RESPONSE OF THE ARRAY ON THE MAINBEAM
C i.e. THETA = 0.0, AND PHI = 0.0

COMMON/COMMO3/ RER, IMR, RERR
COMMON/COMMO4/ K,M,AK
COMMON/COKMO8/ C,D
COMMON/COMMiOI A,AMP,ALPHA .\,

COMMON/COMML7/ MM,NPOOL,IJ-
COMMON/COMM19/ DNORM
DIMENSION IMRC200),C(200),D(200),A(200),AMP(200,200) J%
DIMENSION ALPHA(200,200)
INTEGER RER(200)0
DATA RAf2D/57.2958/,D2RADIL.74532925 E-02/
DATA INDEX/Of
REAL*8 SUMR,SUMI,DCOS,DSIN,U
KK=l
IF(INDEX.GT.O) GOTO 23
DNORM=O. 00
DO 23 II=1,M 'p.

DNORM=DNORM+A( II)
INDEX=INDEX+l

23 CONTINUE .

THiETA2=O.0
PH12=0.0
SUMR=O.O
SUMI=O.O
USIN=SIN(THETA2)*SIN(PHI2)
UCOS=SIN(THETA2)*COS( PHI2) I

C SUM OVER ALL THE ELEMENTS TO DETERMINE THE RESPONSE OF THE ARRAY.
DO 20 II=1,IJ
IF(A(IMR(II)).EQ.0.O) GOTO 20
U1=C( IMR(II) )*UCOS%
U2=D(IMR(II) )*USIN
U=DBLE(AkK*(Ul+U2)+ALPHA(RER(II) ,IMfR(II)))
H=A(IMR(II))*AMP(RER(II) ,IMR(II))
SUMR=SUNR+H*DCOS(U)
SUMI=SUMI+H*DSIN( U)

20 CONTINUE
AMPL=SNGL( SUMR* STJR+SUMI* SUMI)
AkMPL=SQRT( AMPL)
SAMP=AM4PL/ DNORM
IF(AkBS(SAMP).GT.1.0592E-5) THEN

ZZI=20*ALOG10(SAMP)
ELSE .. ev

13 ZZI=-99.O
END IF
RETURN
END



SUBROUTINE NEARIN
C NEARIN WRITES THE TRANSCUCER ARRAY PARAMETERS IN AN OUTPUT FILE IN A
C FORMAT WHICH IS COMPATIBLE WITH THE INPUT FORMAT FOR THE NEARPRES
C PROGRAM. THIS ROUTINE CONTROLS ONLY THE INITIAL PARAMETERS.
C THE PARAMETERS OF THE FINAL SOLUTION ARE PRINTED BY THE WRITE
C SUBROUTINE THIS ROUTINE INCORPORATES THE SYMMETRY OF THE ARRAY INTO
C THE OUTPUT FILE.

COMMON/COMMO1/ IM,NEVEN,NROUTE
COMMON/COMMO3/ RER, IMR,RERR
COMMON/CO.M04/ K,M,AK
COMMON/COMMO8/ C,D
COMMON/COMMlO/ A,AMP,ALPHA
COMMON/COMM14/ DOLAM ,WAVE
COMMON/COMM17/ MM,NPOOL,IJ _

DIMENSION IMR(200),A(200),AMP(200,200),ALPHA(200,200),C(200),D(200)
INTEGER RER( 200)

DATA D2RAD/l.74532925 E-02/
RAD2D=1 .0000/D2RAD
IF(NPOOL.EQ.1) THEN
WRITE(2,400) NPOOL,MM

400 FORM4AT(' I,1,1'/'-90.O,90.O,2.O'/'O.O,180.O,5.O'/I2/I3)

WRITE(2,401) NPOOL
401 FORMAT(' 1,1,1'/'-90.O,90.O,2.O'/'O.O,180.O,5.O'/I2).,'.

E NDIF
500 WRITE(2,711) NROUTE,M
711 FORMAT(' 2, 2,',12,',',12,', 1P)

C WRITE THE ARRAY PARAMETERS USING FOUR-FOLD SYMMETRY.7'
IF(NROUTE.EQ. 1) THEN *

NlL=INT( SQRT(FLOAT( IM)))
IF(NEVEN.EQ. 1) THEN

N2L=NlL+l
ELSE

714 N2L=NIL
ENDIF 

.

719 WRITE(2,712) IM,NEVEN,NIL,N2L
712 FORMAT(12, ',',12, ',',12, ',',12)

IFNEVEN.NE. 1) THEN
C WRITE THE ARRAY PARAMETERS USING EVEN SYMMETRY.
C WRITE THE SHADING V

DO 601 II=1,IM */

WRITE(2,702) A(II)
702 FORMAT(F8.4)
601 CONTINUE

C WRITE THE ELEMENT TOLERANCES.
901 DO 902 II=1,IJ

WRITE(2,302) IMR(II)
902 CONTINUE .

DO 603 Il=1,IJ %

WRITE(2,700) AMIP(RER(II),IMR(Il)),ALPHA(RER(II),IM4R(II))*RAD ',

%0W
r.% .4%0

4pS
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12D
603 CONTINUE
700 FORMAT(F9.5,',',F9.5)
C WRITE THE COORDINATES.

DO 599 II=1,IM

701 FORM.AT(F6.3,' ,' ,F6.3)
599 CONTINUE

WRITE(2,725) WAVE,DOLAM
725 FORMAT(F8.4/F8.4)
C WRITE THE ARRAY PARAMETERS USING ODD SYMMETRY.

ELSE
710 DO 721 II=1,IM+1

WRITE(2,702) A(II)
721 CONTINUE

DO 903 II=1,IJ
WRITE(2,302) IMR(II)

903 CONTINUE

302 FRA(4
DO 724 II=1,IJ
WRITE(2,700) AMP(RER(II),IMR(II)),ALPHA(RER(II),IMR(II))*RADA%

12D
724 CONTINUE

C WRITE THE COORDINATES.
DO 723 II=1,IM+1
WRITE(2,701) C(II),D(II)

723 CONTINUE
WRITE(2,725) WAVE,DOLAM

ENDIF S'

ELSE
C WRITE THE PARAMETERS FOR A NON-SYMMETRIC ARRAY.

DO 801 II=1,IJ
WRITE(2,702) A(II) -

801 CONTINUE
DO 909 Il=l,IJ
WRITE(2,302) IMR(II)

909 CONTINUE
DO 904 II=1,IJ
WRITE(2,700) ANlP(RER(II),IMR(II)),ALPHA(RER(II),IMR(II))*RAD

12D
904 CONTINUE

DO 803 II=1,IJ 1.

WRITE(2,701) C(II),D(II)
803 CONTINUE

WRITE(2,804) WAVE
804 FORM.AT(F8.4)

90ENDIF
90RETURN

E ND

e0



APPENDIX E

LISTING OF NEO-KENDIG COMPUTER SELECTION PROGRAM

C H K V* [

C COMPUTER IMPLEMENTATION OF THE NEO-KENDIG SELECTION TECHNIQUE *

C WRITTEN BY KING W. WIEMANN *

INTEGER U(200,2)

REAL A(2),V(2)
COMMON/COMMOI/ M,MM,IM,IMI
COMMON/COMM02/ U

COMMON/COMM07/ A,V

COMMON/COMML3/ NEVEN,NIL,N2L,LSEED

CALL DATAININ
CALL RESPONSE(1)
CALL STAT(I)

CALL DELETE

CALL STAT(1)
WRITE(4,500) 100.*A(1),A(2)

500 FORMAT(5X,'AMPLITUDE MEAN = ',F12.8,' PHASE MEAN = ',F12.8

1)
WRITE(4,501) 100.*V(1),V(2)

501 FORMAT(5X,'AMPLITUDE VARIANCE = ',F12.8,' PHASE VARIANCE = ',F12.8

/)

WRITE(4,502)
502 FORMAT(90X,'GROUP',5X,'POSITION :',3X,'1',5X,'2',5X,'3',5X,'4')

DO 10 II=1,IML

IF (II.GT.1) CALL RESPONSE(II) t
CALL REMOVE(II)

IF(II.EQ.1.AND.NEVEN.EQ.1) GOTO 10

CALL OPTIMO(II)
CALL WRITEIT(II)

10 CONTINUE
CALL WRITEIT(O)
CALL NEARINI

CALL PERMSERIN
STOP
END

SUBROUTINE CMAX(DI ,S)

C ROUTINE TO DETERMINE THE MAXIMUM VALUE OF C. USED FOR SORTING THE .

C REMAINING ELEMENTS.
INTEGER S -

DLMENSION C(20)
COMMON/COMM17/ C
DI=I.OE-12
DO 10 LL=I,S

IF (C(LL).GT.DI) DI=C(LL)

10 CONTINUE
RETURN
END

% %.'
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SUBROUTINE DATAININ
C ROUTINE TO READ IN THE PARAMETERS NECESSARY TO IMPLEMENT THE

C NEO-KENDIG TECHNIQUE.
REAL*16 S(200,9)
INTEGER U(200,2),OSS(40),TERM(3),RER(200),RERR(200),IMR(200)
REAL RA(40),XA(40),X(70),Y(70),SHADE(70)
CHARACTER*1 NAME(40)
COMMON/COMMO1/ M,MM,IM,IMI
COMMON/COMM02/ U
COMMON/COMM06/ OSS ,TERM

COMMON/COMM6A/ NAME
COMMON/COMMO8/ RA,XA,F,SIZE
COMMON/COMM8A/ S
COMMON/COMMI2/ RER,RERR, IMR
COMMON/COMM13/ NEVEN,NIL,N2L,LSEED
COMMON/COMML4/ WAVE, DOLAM
COMMON/COMMI5/ X,Y,SHADE
READ(3,500) MM,M,IM,IM1,NEVEN

500 FORMAT(515)
C OSS IS THE ORDER OF SEARCH. IT SPECIFIES IN WHICH ORDER THE ARRAY
C IS TO BE FILLED. S

READ(3,503) (OSS(JJ),JJ=I,IMl)
503 FORMAT(2013)

C TERM CONTROLS WHICH KENDIG TERMS ARE TO BE THE CRITERIA.
C TERMS 3, 4 AND 8 ARE ALLOWED IN ANY GROUPING OF 1, 2, OR 3 TERMS.

READ(3,505) (TERM(JJ),JJ=I,3)
505 FORMAT(312)

READ(3,501) F,SIZE d
501 FORMAT(2FI0.4)

READ(3,508) LSEED
508 FORMAT(I9)

C U IS THE NUMBER ASSIGNED TO EACH ELEMENT; S CONTAINS THE
C EQUIVALENT CIRCUIT VALUES.0

DO 10 JJ=I,MM
U(JJ,2)=O

READ(3,502) U(JJI),(S(JJ,LL),LL=2,7)
502 FORMAT(15,6D15.9)
10 CONTINUE - ,

C RA, AND XA ARE THE REAL AND IMAGINARY RADIATION LOADINGS FOR 0
C EACH POSITION. NAME IS THE LETTER ASSIGNED TO EACH SYMMETRIC
C POSITION. .,

DO 30 JJ=I,IMI
READ(3,504) RA(OSS(JJ)),XA(OSS(JJ)),NAME(OSS(JJ))

504 FORMAT(2El2.4,A1)
30 CONTINUE

C NIL AND N2L SPECIFY THE LENGTH AND WIDTH OF THE FIRST QUADRANT,

C (IN NUMBER OF ELEMENTS). I
NILz INT(SQRT(FLOAT(IM) ) ) .

IF(NEVEN.EQ.1) THEN
N2L=N1L+l

ELSE 0
N2L=NIL

END IF
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C RER IS THE SEQUENTIAL NUMBER OF EACH ELEMENT OF THE ARRAY IN ARRAY

C ORDER. W

C RERR IS THE ASSIGNED NUMBER OF EACH ELEMENT OF THE ARRAY IN ARRAY ,

C ORDER.
C IMR IS THE ORDER OF TRANSDUCER ARRAY POSITIONS IN THE PERMUTATION
C ARRAY.

DO 40 KK=I,MM

RER(KK)=O
RERR(KK) =0
IMR(KK)=KK

40 CONTINUE

N=O
IF(NEVEN.EQ.1) N=

C X AND Y ARE THE X AND Y COORDINATES OF EACH SYMMETRIC POSITION,

C AND SHADE IS THE SHADING VALUE FOR EACH POSITION.
DO SO JJ=1,IM+N

50 READ(3,507) X(JJ),Y(JJ),SHADE(JJ)
507 FORMAT(3F8.4)

READ(3,508) WAVE,DOLAM

508 FORMAT(2F9.4)

RETURN
END

SUBROUTINE DELETE

C ROUTINE TO PERMANENTLY DELETE ELEMENTS FROM THE SELECTION POOL BEFORE

C THE SELECTION PROCESS BEGINS.

INTEGER U(200,2) --

COMPLEX*16 ELEMNT(200)

REAL A(2),V(2)
COMMON/COMMOI/ M,MM,IM,1M'

COMMON/COMMO2/ U -..

COMMON/COMMO7/ A,V
COMMON/COMM16/ ELEMNT
DO 10 JJ=I,MM

T1=DREAL(ELEMNT(JJ) )-A(1)
T2=DIMAG(ELEMNT(JJ) )-A(2)
IF (TI.LT.4.0*V(1)) GOTO 10
IF (T2.LT.4.0*V(2)) GOTO 10 0

WRITE(4,100) U(JJ,I)

100 FORMAT(' ELEMENT NUMBER ',13,' WAS DELETED FROM CONSIDERATION')
U(JJ, l)=O

10 CONTINUE
RETURN

END

SUBROUTINE DMAX(D1, S)
C ROUTINE TO FIND THE MAXIMUM VALUE OF THE D ARRAY.
C USED TO FIND THE BEST PERMUTATIONS THAT MEET THE KENDIG TERM
C UNDER CONSIDERATION.

INTEGER S

DIMENSION D(40)

COMMON/COMMIO/ D

% %

~.
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DI=1.OE-12
DO 10 KK=l,S
IF (D(KK).GT.D1) DI=D(KK)

10 CONTINUE
RETURN
END

SUBROUTINE NEARINI
C NEARINi WRITES THE TRANSCUCER ARRAY PARAMETERS IN AN OUTPUT FILE IN A
C FORM4AT WHICH IS COMPATIBLE WITH THE INPUT FORM4AT FOR THE NEARPRES ' V~

C PROGRAM.
REAL X(70),Y(70),SHADE(70)
INTEGER U(200,2),RER( 200)
COMPLEX*16 ELEMNT( 200)
COMMON/COMMOI/ M,MM,IM,IM1
COMMON/COMMO2/ U
COMMON/COMM12/ RER,RERR, IMR
COMMON/COMMI3/ NEVEN,N1L,N2L,LSEED
COMMON/COMML4/ WAVE,DOLAM
COMMON/COMM15/ X,Y,SHADE
COMMON/COMM16/ ELEMNT
WRITE(2,500) MM

500 FORMAT('O,1,1'/'-90.O,90.O,2.O'/'O.O,180.O,5.0'/' 1'/I3)
WRITE(2,501) M

501 FORMAT('1,O,1,' ,I2,' ,1')
C WRITE THE ARRAY PARAMETERS USING FOUR-FOLD SYMMETRY.

WRITE(2,502) IM,NEVEN,N1L,N2L
502 FORMAT(12,', ',12,' ,' ,12,' ,',I2)

IF(NEVEN.NE.1) THEN
C WRITE THE ARRAY PARAMETERS USING NON-EVEN SYMMETRY.
C WRITE THE SHADING J

DO 100 JJ=1,IM
WRITE(2,503) SHADE(JJ)

503 FORMAT(F7.5)
100 CONTINUE

C WRITE THE ELEM4ENT TOLERANCES.
DO 110 LL=1,M
IF(RER(LL).EQ.0) THEN
WRITE(2,507)

507 FORMAT(' 0.00000, 0.0000')
GOTO 110

ENDIF
DO 110 KK=1,MM
IF(U(KK,1).NE.RER(LL)) GOTO 110

WRITE(2,504) 100.*DREAL(ELEMNT(KK)),DIMAG(ELEMNT(KK))
504 FORMAT(F8.5,',',F9.5)
110 CONTINUE

C WRITE THE COORDINATES. .&j

DO 130 JJ=1,IM
WRITE(2,505) X(JJ),Y(JJ)

505 FORMAT(F5.3,' ,' ,F5.3)
130 CONTINUE~
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WRITE(2,506) WAVE,DOLAM
506 FORMAT(F8.4/F8.4/'O')
C WRITE THE ARRAY PARAMETERS USING EVEN SYMMETRY.

ELSE *.,

DO 140 JJ=1,IM+l
140 WRITE(2,503) SHADE(J)

DO 150 LL=1,M
IF(RER(LL).EQ.O) THEN
WRITE(2,507)
GOTO 150

ENDIF A

DO 150 KK=1,M
IF(U(KK,1).NE.RER(LL)) GOTO 150
WRITE(2,504) 100.*DREAL(ELEMNT(KK)) ,DIMAG(ELEMNT(KK))

150 CONTINUE
DO 170 JJ=1,IM+l
WRITE(2,505) X(JJ),Y(JJ)

170 CONTINUE
WRITE(2,506) WAVE,DOLAM

ENDIF
RETURN
END

SUBROUTINE OPTIMO(II)
C SUBROUTINE TO SELECT FOUR EUktMENTS AT A TIME FOR AN ARRAY POSITION

C BASED ON THE VALUES OF THE KENDIG TERMS SPECIFIED.

INTEGER Q,P,O(8,40),TERM(3),U(200,2),RER(200),RERR(200),OSS(20)
INTEGER T(4),BR(200),S
DIMENSION IMR(200)
REAL K(8) ,A(2),V(2),D(40),AMP(200),PHASE(200)
COMMON/COMMOl/ M,MM,IM,IM1
COMMON/COMMO2/ U
COM4MON/COMMO3/ AMP, PHASE0
COMMON/COMM3A/ BR
COMMON! COMMO4/ Q
COMMON/COMMO6/ OSS,TERM ...

COMMON/COMMO9/ T1
COMMON/COKM1O/ D
COMMON/COMM12/ RER,RERR,IMR
P=O
S=1
D1=0.0

C GENERATE ALL POSSIBLE PERMUTATIONS OF 4 ELEMENTS FROM THE

C ELEMENTS REMAINING IN THE POOL AND FIND THE 40 BEST PERMUTATIONS.
DO 10 KI=1,Q'
DO 20 Ll=l,Q
IF (L1.EQ.Kl) GOTO 20
DO 30 MI=1,Q
IF (MI.EQ.LL.OR.Ml.EQ.Kl) GOTO 30
DO 40 NI=1,Q -

IF (Nl.EQ.Ml.OR.N1.EQ.L1.OR.Nl.EQ.K1) GOTO 40

P-I+6

r P106iN..



CALL SETU(S,U1,Kl,L1,M1,Nl)
IF (P.LE.40) THEN
D(P)=Ul
0(1 ,P)=Kl
O(2,P)=Ml
O(3,P)=LI
O(4,P)=Nl
GOTO 40

ENDIF
50 CALL DMAX(DL,40)

IF (U1.LE.DI) THEN W-
DO 60 JJ=1,40
IF (D(JJ).EQ.Dl) THEN
D(JJ)=Ul
0(1 ,JJ)=K1
O(2,JJ)=Ml
OC 3,JJ)=LI
0(4,JJ)=Nl
GOTO 40

ENDIF
60 CONTINUE

ENDIF
40 CONTINUE
30 CONTINUE
20 CONTINUE
10 CONTINUE

C THIS STEP IS PERFORMED ONLY [F TWO TERMS ARE THE SELECTION CRITERIA
IF (TERM(3).EQ.0) THEN

IN=40
DO 239 JJ=1,40
O(5,JJ)=O( I,Jj)
0(6,JJ)=0(2,JJ)
0(7,JJ)=0(3,JJ)

23 0( 8,JJ)=O( 4,JJ)
29 CONTINUE Nr

GOTO 200 %

ENDIF

P=O
C GENERATE AND TEST THE VALUES OF THE SECOND TERM FOR ALL THE
C PERMUTATIONS OF THE FIRST TERM.

D1-0. 0
DO 80 JJ=1,40
CALL SETU(S,UI ,O(I,JJ),O(3,JJ) ,O(2,JJ) ,O(4,JJ))
P=P+1
IF (P.LE.8) THEN
D(P)=Ul
O(5,P)=O( 1,JJ)
0(6,P)=0(2,JJ)
O(7,P)=O(3,JJ)
O(8,P)=0(4,JJ)

'UN
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GOTO 80
ENDIF
CALL DMAX(DI,8)
IF (UI.LE.DI) THEN

DO 100 KK=1,8
IF (D(KK).EQ.D1) THEN

D(KK)=U1

O(5,KK)=O( I, JJ)
O(6,KK)=O(2,JJ)
0(7,KK)=0(3,JJ)
O(8,KK)=0(4,JJ)
GOTO 80

ENDIF
100 CONTINUE

ENDIF
80 CONTINUE

IN=8
C BASED ON THE VALUES OF THE FIRST TERM, (OR FIRST TWO TERMS),
C SELECT FOUR ELEMENTS ON THE BASIS OF THE LAST TERM.
200 W=I.0E12

S=I+S 0
DO 110 JJ=1,IN ..
CALL SETU(S,UI,0(5,JJ),0(7,JJ),0(6,JJ),0(8,JJ))
IF (UI.LT.W) THEN
W=U 1
T(1)=0(5,JJ)
T(2)=O(6,JJ) 0
T(3)=0(7,JJ) , ,
T(4)=0(8,JJ)

ENDIF4
110 CONTINUE
C FOR THE FIRST SELECTION, SPECIFY THE REFERENCE POINT.

IF (II.EQ.1) CALL SETK
C RESTORE ALL THOSE ELEMENTS WHICH WERE TEMPORARILY REMOVED.

CALL PREPNSET
C STORE BOTH THE SELECTED ELEMENTS' SEQUENTIAL AND ASSIGNED NUMBERS
C IN ARRAY ORDER.

RER(OSS(II) )=BR(T( 1))
RER(OSS(II)+IM)=BR(T(2)) 0
RER(OSS( II)+2*IM)=BR(T(3))
RER(OSS( II)+3*IM)=BR(T( 4))
NN-0,
DO 120 LL=1,4
DO 130 KK=1,MM
IF(U(KK,I).EQ.BR(T(LL))) THEN ]
RERR(OSS(II)+(LL-I )*IM)=KK
IF(NN.EQ.3) GOTO 140
NN=NN+l .*.. ,
GOTO 120

ENDIF
130 CONTINUE
120 CONTINUE

%.e%..

% ,/

%
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140 RETURN
END

SUBROUTINE PERMSERIN
C ROUTINE TO WRITE THE ELEMENT AND ARRAY PARAMETERS TO A FILE
C TO BE READ BY PERMSER.%

INTEGER RER(200) ,RERR(200) ,IMR(200) ,U(200,2)
REAL AMPI(200,40),PHASEI(200,40),X(70),Y(70),SHADE( 70)
REAL THETA(40)
COMMON/COMMOI/ M,MM,IM,IMI
COMMON/COMMO2/ U
COMMON/COMMi 1/ AMPI ,PHASE1
COMMON/COMM12/ RER,RERR, IHR
COMMON/COMMI3/ NEVEN,N1L ,N2L,LSEED
COMMON/COMM14/ WAVE, DOLAM
COMMON/COMM15/ X,Y,SHADE
WRITE(7,500) DOLAM,WAVE,M,MM,NEVEN,IM

500 FORMAT(F8.4,F8.4/I3,',1O,1,0,1'/I3/I2,',',I3)
N=0
IF(NEVEN.EQ.1) N=1
DO 5 JJ=1,IM+N

5 WRITE(7,501) X(JJ),Y(JJ),SHADE(JJ)
501 FORMAT(F5.3,',',F5.3,',',F7.5)

DO 20 JJ=1,MM
WRITE(7,509) U(JJ,1)

509 FORMAT(13)
DO 20 LL=1,IM+N
WRITE(7,504) 100.*AMPI(JJ,LL),PHASE1(JJ,LL)

504 FORMAT(F8.5,',',F9.5)
20 CONTINUE

CALL SETIMR
DO 30 KK=1,MM
WRITE(7,S08) IMIR(KK) ,RERR(KK) o

508 FORMAT(13,t ,',I3)
30 CONTINUE

READ(3,600) PHI1,DELPHI,DELTHE
600 FORMAT(3FI0.5)

WRITE(7,505) PHIl ,DELPHI,DELTHE
505 FORMAT('O'/F6.2,',',F6.2/F6.2)

TE1=( 360.0-PHIL )/DELPHI,. .

NPHI=TE24
TEMI=INT(TEM)/2
IF(TEM/2.0.NE.TEML) NPHI=TEMi1.O

C READ IN THE THETA VALUES CONSTRAINED FOR EACH PHI.
DO 10 II=1,NFHI

10 READ(3,601) THETA(II)
601 FORMAT(F10. 5)

DO 15 It=1,NPHI
15 WRITE(7,506) THETA(II)
506 FORl{AT(F6.2)

READ(3,602) ZLOLIM___
602 FORMAT(F12.5) "
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WRITE(7,507) ABS(LSEED/10),ZLOLIM .14

507 FORMAT(I9,',',F8.2)
RETURN
END

SUBROUTINE PREPNSET

C ROUTINE TO RESTORE THOSE ELEMENTS THAT WERE TEMPORARILY
C DELETED FROM THE SELECTION POOL FOR USE IN SELECTION FOR THE ~
C NEXT POSITION.

INTEGER U(200,2),BR(200),T(4)

COMMON/COMMO/ M,MM,IM,IMI
COMMON/COMMO2/ U

COMMON/COMM3A/ BR
COMMON/COMMO9/ T .k

C PERMANENTLY DELETE THOSE ELEMENTS JUST SELECTED. •
DO 10 JJ=IMM
IF (U(JJ,I).EQ.BR(T(1)).OR.U(JJ, I).EQ.BR(T(2)).OR.U(JJ, l).EQ.BR(T(

13)).OR.U(JJ,1).EQ.BR(T(4))) THEN
U(JJ,2)=-

ENDIF
10 CONTINUE

DO 20 JJ=1,MM
IF (U(JJ,2).EQ.-2) U(JJ,2)=O

20 CONTINUE
RETURN
END

SUBROUTINE REMOVE( II)
C ROUTINE TO REMOVE ELEMENTS THAT ARE AWAY FROM THE CURRENT MEAN ..-

C VALUES FOR ALL BUT THE FIRST POSITION, THESE MEANS ARE THOSE OF THE
C ELEMENTS OCCUPYING THE FIRST POSITION. .. .

INTEGER U(200,2),Q,P

COMPLEX*16 ELEMNT( 200)

REAL K(8)
COMMON/COMMOI/ M,MM,IM,IMI
COMMON/COMM02/ U .
COMMON/COMM04/ Q 4/ .
COMMON/COKMO5/ K,E
COMMON/COMM16/ ELEMNT 0
DATA K(8)/O.O/

C K(5-8) ARE THE PARAMETERS THAT CONTROL THE REMOVAL OF ELEMENTS
C FROM THE SELECTION POOL BASED ON THEIR DISTANCE FROM THE REFERENCE
C MEAN, WITH A SCALE OF THE REFERENCE VARIANCE.

K(5)=.25

K(6)=. 10
K(7)=.05

I F=25.O+K(8)
C P INDICATES WHETHER ELEMENTS HAVE BEEN REMOVED DURING AN ITERATION
C OF THE REMOVAL CYCLE.

5 P=O
DO 10 JJ=I,MM •

S
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IF (U(JJ,2).NE.O.OR.U(JJ,I).EQ.0) GOTO 10
TI=(DREAL(ELEMNT(JJ))-K(3) )**2
T2=(DIMAG(ELEMNT(JJ) )-K(4))**2 ]
IF (SQRT(T1+T2).LE.F*E) GOTO 10
U(JJ,2)=-2

P=1+P
10 CONTINUE

CALL SETQ
C REPLACE IS CALLED IF THEIR ARE TOO FEW ELEMENTS REMAINING IN THE
C SELECTION POOL.

IF (Q.LT.10) CALL REPLACE(&1)
IF (Q.LE.14) GOTO 50 -f , -

C IF THIS IS THE SELECTION FOR THE FIRST POSITION, THE MEAN AND
C VARIANCE OF THE GROUP MUST BE DETERMINED AFTER ELEMENTS HAVE
C BEEN REMOVED. 0

IF (II.NE.1) GOTO 40
IF (P.EQ.0) GOTO 40
CALL STAT(II)
GOTO 5

40 IF (F.GT.I.75) F=F-K(5)
IF (F.LE.1.75.AND.F.GT.I.0) F=F-K(6) 0
IF (F.LE.1.0) F=F-K(7)
GOTO 5

50 WRITE(4,500) F
500 FORMAT(5X,'FINAL F = ',F6.2) %.0%7

WRITE(4,501) Q
501 FORMAT(5X,'NUMBER OF ELEMENTS REMAINING = ',13) •

CALL SORT k

RETURN
END

SUBROUTINE REPLACE(*) %
C ROUTINE TO RESTORE ALL ELEMENTS THAT WERE TEMPORARILY DELETED BECAUSE 0
C 10 OR FEWER ELEMENTS WERE LEFT. ADDITIONALLY, THE INCREMENTS ARE .
C DECREASED.

REAL K(8)
INTEGER U(200,2)
COMMON/COMMOL/ M,MM,IM,IMI
COMMON/COMM02/ U S
COMMON/COMMO5/ K,E
K(8)=K(8)+5.O0
K(5)=. 1
K(6)=.075

K(7)=.025
DO 10 KK=1,MM S
IF (U(KK,2).EQ.-2) U(KK,2)=O

10 CONTINUE

RETURN 1
END

SUBROUTINE RESPONSE(L) •
C ROUTINE TO DETERMINE EACH ELEMENTS AMPLITUDE AND PHASE RESPONSE BASED

.-.,,.- -.,.-.)
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C ON ITS EQUIVALENT CIRCUIT VALUES AND THE RADIATION LOADING FOR % -

C EACH ARRAY POSITION.
INTEGER U(200,2),OSS(40)
REAL RA(40),XA(40) $j
REAL*16 Ri ,R2,R3,R4,R5,R6,R7,R8,R9,RIO,R1 1,R12,R13
REAL*16 S(200,9),PI
COMPLEX* 16 ELEMNT( 200)
REAL AMPI(200,40),PHASEI(200,40)
COMMON/COMMOI/ M,MM,IM,IMI
COMMON/C014M02/ U

COMMON/COMM8A/S

COMMON/COMMO6/ OS EM

PI=4.OQO*QATAN(1 .OQO)
DO 20 JJ=1,MM
R1=S(JJ,2)/(S(JJ,5)-S(JJ,4))
R2=S(JJ,3)/(2.0Q3*PI*S(JJ,2)*RI)
R3=1.OQO/(R2*(2.OQO*PI*S(JJ,2) )**2.OQO)
R4=(S(JJ,6)/1 .0Q12)-R2
R5=1.0Q03/S(JJ,3)
R6=S(JJ ,7)
R7=2. OQO*PI*QEXT( F)
R8=(QEXT(SIZE) )**2.OQO
R9=R8**2. OQO
RlO=1.OQO-(R7**2.OQO)*R3*R4+(R4/R2)-R7*R4*QEXT(XA(OSS(L)))*R96
R11=R7*R4*(R5+QEXT(RA(OSS(L)))*R9/(R6**2.OQO))
R12=R8/(R6*QSQRT(R1O**2.OQO+R1 1**2.OQO))
RI 3=QATAN2D(R1 1,RIO)

C AMPI AND PHASE1 ARE USED AS INPUT TO THE PERMSER FILE.
C ELEMNT IS USED DURING THE SELECTION PROCESS.

AM4PI(JJ,OSS(L) )=SNGL(R12)
PRASEL(JJ,OSS(L) )=SNGL(Rl3)
IF (U(JJ,2).EQ.-1) GOTO 20
ELEMNT(JJ)=DCMPLX(R12,R13)

20 CONTINUE
RETURN .--

END

SUBROUTINE SETIMR
C ROUTINE TO RANDOMIZE THE PERMUTATION ARRAY FOR USE IN PERMSER
C PROGRAM.
C THIS ROUTINE APPEARS IN THE NEWSTART SUBROUTINE OF PERMSER. ,p.

INTEGER RER(200) ,RERR( 200) ,IMR( 200),RERT( 200) ,IMRT( 200) ,RERRT( 200)S
INTEGER U(200,2),T(200)
DIMENSION NN( 200) '

COMMON/COMMOI/ M,M,IM,lMl

COMMON/COMMO2/ U
COMMON/COMI2/ RER,RERR, IMR
COMMON/COMM13/ NTEVEN,NlL,N2L,LSEED
DO 10 KK=1,%M

No %
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NN(KK) =0
T(KK)=U(KK, 2)

10 CONTINUE0
LL= I
ITER=O

I ITER=ITER+1
Y=FLOAT(MM)*RAN(LSEED)+1 .0
NN 1=1NT( Y)
IF(LL.NE.1) GOTO 21
NN(LL)=NNI
LL=LL+l
GOTO 1

21 IE(ITER.GT.1O*MM) GOTO 92
DO 22 KK=1,LL
IF(NNI.EQ.NN(KK)) GOTO 1

22 CONTINUE

NN(LL)=NNI
LL=LL+l
IF(LL.GT.MM) GOTO 94
GOTO 1

92 ITER=5*MM
GOTO 1

C THOSE PERMUTATION ARRAY SLOTS THAT REPRESENT WORKBENCH POSITIONS
C MUST BE FILLED BY ELEMENTS THAT HAVE NOT BEEN SELECTED.

94 DO 39 yiL=4*1--lM
DO 35 JJ=1 ,M
IF (T(JJ).EQ.-1) GOTO 350
RERR(KL)=JJ A

T(JJ)=-l I
GOTO 39

35 CONTINUE
39 CONTINUE

DO 36 JJ=1,NM
IF(RERR(JJ).EQ.O) THEN

DO 37 KK=1,MM
IF (T(KK).EQ.-1) GOTO 37
RERR(JJ)=KK
T (KK) 1 p

GOTO 36
37 CONTINUE

ENDIF
36 CONTINUE

C PLACE EACH ARRAY IN THE SAME RANDOM ORDER.
DO 30 KK=1,.M
UiMRT(KK)=IMR(NN(KK))
RERT(CKK) =R ER( NN( KK) )
RERRTCKK)=RERR(NN(KK))

30 CONTINUE
DO 40 KK=1,MM
RER( KK) =RERT( KK)
IMR( KK)=IMRT( KK)
RERR( KK)=RERRT( KK)



125

40 CONTINUE%
RETURN
END

SUBROUTINE SETK
C ROUTINE TO STORE THE MEAN VALUES AND VARIANCES FOR THE FIRST FOUR
C ELEMENTS SELECTED FOR USE AS A REFERENCE POINT.

INTEGER T(4)
REAL K(8),A(2),V(2),AMP(200),PHASE(200)
COMMON/COMMO3/ AMP, PHASE
COMMON/COMMO5/ K,E
COMMON/C014M07/ A,V
COMMON/COMMO9/ Td

C COMPUTE THE MEANS AND VARIANCES FOR THE FOUR SELECTED ELEMENTS.
A(.' ....

A(2)=O.O
A(2)=O.O
V(1)=O.O

DO 10 JJ=1,4
A( 1)=A( 1)+AMP(T(JJ))/4.O
A( 2)=A(2)+PHASE(T(JJ) )/4. 0

10 CONTINUE
DO 20 JJ=1,4
V(1)=V( 1)+(AMP(T(JJ))-A( 1))**2.o
V(2)=V(2)+(PHASE(T(JJ) )-A(2) )**2.O

20 CONTINUE
V( 1)=SQRT(V( 1)/3.0)
V(2)=SQRT(V(2)/3.0)
WRITE(4,500)

500 FORMAT(5X,'THE MEANS AND VARIANCES OF THE FIRST FOUR CHOSEN ARE')
WRITE(4,501) 100.*A( 1),A(2), 100.*V(1) ,V(2)

501 FORMAT(5X,'AMPLITUDE MEAN: ',F12.8,' PHASE MEAN: 1,F12.8/7X,IVARI
IANCE: ',F12.8,4X,'VARIANCE: ',F12.8)

C INITIALIZE THE REFERENCE MEANS AND VARIANCES.
K(1)=V(l)
K(2)=V(2)
K(3)=A( 1)
K(4)=A( 2) %-

E=SQRT(K( 1)**2.0+K(2)**2.O)
RETURN
END

SUBROUTINE SETQ
C ROUTINE TO KEEP TRACK OF HOW MANY ELEMENTS ARE AVAILABLE IN THE
C SELECTION POOL.

INTEGER U(200,2),Q N
COMMON/COMMOI/ M,MM,IM,IMI V
COMMON/COM2/ U .~

CORMON/COMMO4/ Q .

Q=O
DO 10 JJ=1, M
IF (U(JJ,2).EQ.O.AND.U(JJ, 1).NE.-1) Q=1+Q
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10 CONTINUE
RETURN
END

SUBROUTINE SORT
C ROUTINE TO RANK THE REMAINING ELEMENTS, BEFORE THE OPTIMO
C SEARCH, ACCrnRDING TO THEIR DISTANCES FROM THE REFERENCE
C MEAN VALUES.

INTEGER U(200,2),BR(200),D,BRT(200),RER(200),RERR(200)
COMPLEX*16 ELEMNT( 200)
CHARACTER* I NAME( 40)
REAL AMP(200),PHASE(200),A(2),V(2),C(20),K(8),AMPT(200)
REAL PHASET(200),RA(40),XA(40)
COMMON/COMMO,' M,MM,IM,IMI
COM.MON/COMMO2/ U
COMMON/COMMO3/ AMP, PHASE
COMMON/COMM3A/ BR
COMMON/COMMO5/ K,E
COM.MON/COMM6A/ NAME
COMMON/COMMO8/ RA,XA,F,SIZE

COMMON/COMM17/ C
DATA KL/O/
KL=KL+ I
D=O0
DO 10 JJ=1,MM
IF (U(JJ,2).NE.O.OR.U(JJ,1).EQ.O) GOTO 10
D=1+D
C(D)=SQRT((DREAL(ELEMNT(JJ))-~K(3))**2+(DIMAG(ELEMNT(JJ))-~K(4))**2) . %

AMP(D)=DREAL(ELEMNT(JJ))
PHASE(D)=DIMAG(ELEMNT(JJ))
BR(D)=U(JJ, 1)

10 CONTINUE
DO 11 JJ=1,D *

CALL CMAX(C1,D)
DO 12 KK=1,D
IF(C(KK).EQ.C1) THEN
I =KK ~'.
GOTO 16

ENDIF
IF(CI.EQ.O.O) GOTO 17 4

12 CONTINUE
16 AMPT(D+1-JJ)-=A.'P(I)

PHASET(D+1-JJ)=PHASE( I) - .
BRT(D+1-JJ)=BR( I)
C(I)=O.O%%

11 CONTINUE
17 DO 18 JJ=1,D q

AMP(JJ)=ALMPT(JJ) 0

PHASE(JJ)=PHASET(JJ)
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BR(JJ)=BRT(JJ)
18 CONTINUE

C DETERMINE THE MEANS AND PHASES OF THE ELEMENTS REMAINING IN THE POOL.
A( 1)=O.O .

A(2)=O.O
V(1)=O.O
V(2)=O.O
Do 20 JJ=1,D
A( 1)=AMP(JJ)+A( 1)
A( 2)=PHIASE(JJ)+A( 2)

20 CONTINUE
A( 1)A( 1)/FLOAT(D)
AC 2)=A( 2)/FLOAT(D)
DO 30 JJ=1,D
V(1 )=(AMP(JJ)-A(1) )**2+V( 1)

30 V(2)=(PHASE(JJ)-A(2) )**2+V(2)
30 CONTINUE

V(1)=SQRT(V( 1)/FLOAT(D-1))
V(2)=SQR.T(V(2)/FLOAT(D-1))
WRITE(4,102) 100.*A(1),A(2)

102 FORMAT(5X,'AVERAGES OF CHOSEN ELEMENTS: AMPLITUDE = 1,F12.8,3X,'
IPHASE = ',F12.8)
WRITE(4,103) 100.*V(1),V(2)

103 FORMAT(5X,'VARIANCES OF CHOSEN ELEMENTS: AMPLITUDE = ',F12.8,3X,l
IPHASE = ',F12.8)

C IF AN ODD ARRAY IS BEING SELECTED FOR, THE CENTER ELEMENT IS THE
C ONE WHICH IS CLOSEST TO THE MEAN AND VARIANCE OF THE REMAINING
C ELEMENTS.

IF(KL.EQ.1.AND.N EVEN.EQ.1) THEN
RER(1)=BR(l)
DO 40 JJ=1,MM
IF(U(JJ,1).EQ.RER(1)) THEN
U(JJ,2)=-l
RERR(1I)=JJ

ELSE
U(JJ,2)=0

END IF
40 CONTINUE

C THE CENTER ELEMENTS MEAN AND THE GROUPS VARIANCE ARE USED AS THE
C REFERENCE POINT.

K(3)=AMP( 1)
K(4)=PHASE(1)
K(I)=V( 1)
K(2)=V(2)
E=SQRT(K( 1)**2+K(2)**2)
WRITE(4,104) 1OO.*AM\P(l),PHASE(1),NAIE(l),BR(l)

104 FORMAT(5x,'CENTER ELEMENT : AMPLITUDE = ',F12.8,3X,' PHASE ',F !.

WRITE(4,105) RA(l),XA(1)
105 FORMAT(5X,'RADIATION LOADING: REAL = ,E12.4,5X,l IMAGINARY

1' ,E12.4//)
ENDIF
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RETURN
END

SUBROUTINE STAT(II)
C ROUTINE TO DETERMINE THE MEAN VALUES AND VARIANCES FOR THE ELEMENTS
C REMAINING IN THE SELECTION POOL.
C ADDITIONALLY, IT SPECIFIES THE REFERENCE VALUES IN THE SEARCH FOR
C THE ELEMENTS TO OCCUPY THE FIRST ARRAY POSITION.

INTEGER U(200,2),Q
COMPLEX*16 ELEMNT( 200)
REAL K(8),A(2),V(2)
COMMON/COMMOl/ M,MM,IM,1M1
COMMON/COMMO2/ U
COMMON/COMMO4/ Q
COMMON/COMMO5/ K,E
COMMON/COMMO7/ A,V
COMMON/COMM16/ ELEMNT
A( 1)=O.O
A(2)=O.O
V(1)=O.O
V(2)=O.O
CALL SETQ
DO 10 JJ=1,MM
IF (U(JJ,2).NE.O.OR.U(JJ,1).EQ.O) GOTO 10
A( 1)=DREAL(ELEMNT(JJ) )/FLOAT(Q)+A( 1)
A( 2)=DIMAG(ELEMNT(JJ) )/FLOAT(Q)+A( 2)

10 CONTINUE
DO 20 JJ=1,M
IF (U(JJ,2).NE.O.OR.U(JJ,1).EQ.O) GOTO 20
V(1)=(DREAL(ELEMNT(JJ))-A(1))**2+V( 1)
V(2)=(DIM4AG(ELEMNT(JJ) )-A(2))**2+V(2)

20 CONTINUE
V(1)=SQRT(V( I)/FLOAT(Q-1))
V(2)=SQRT(V(2)/FLOAT(Q-1))
IF (II.GT. 1) RETURN
K(1)=V(1) . PN
K(2)=V(2) %I

K(3)=A(1)
K(4)=A(2)
E=SQRT(K( 1)**2+K(2)**2)
RETURN
END

SUBROUTINE SETU(S,U1,K2,L2,M2,N2)
C ROUTINE TO DETERMINE THE VALUE OF THE KENDIG TERM SPECIFIED
C FOR EACH PERMUTATION FOUND IN OPTIMO.
C K CORRESPONDS TO POSITION 1, L TO POSITION 3, M TO POSITION 2
C AND N TO POSITION 4.

INTEGER TERM(3),S,OSS(40)
REAL AMP( 200), PHASE( 200)
COMMON/COMMO3/ AMP, PHASE
COMMON/COMMO6/ OSS,TERM

-. .- .- ON
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C KENDIG TERM 3.
IF (TERM(S).EQ.3) THEN
UI=ABS(AMP(L2)*PHASE(L2)-AMP(K2)*PHASE(K2)+AMP(N2)*PRASE(N2)-AMP(m
12)*PHASE(M2))

C KENDIG TERM 4.
ELSEIF (TERM(S).EQ.4) THEN
Ul=ABS(AMP(L2)*PHASE(L2)-AMP(K2)*PHASE(K2)-AMP(N2)*PHASE(N2)sAMP(M
12)*PHASE(M2))

C KENDIG TERM 8.
ELSE
U1=ABS(AMP(L2)*PRASE(L2)+AMP(K2)*PHASE(K2).-AMP(N2)*PHASE(N2)-AMP(M
12)*PHASE(M2))
ENDIF
RETURN
END0

SUBROUTINE WRITEIT(L)
C ROUTINE TO WRITE OUT THE RESULTS FOR EACH POSITION.
C ADDITIONALLY, A MAP OF THE NUMBERS ASSIGNED TO EACH ELEMENT
C IS PRINTED SHOWING WHERE IN THE ARRAY EACH ELEMENT IS LOCATED.

INTEGER U(200,2),BR(200),RER(200),IMR(200),NN(200),OSS(40),T(4)
INTEGER RERR(200)
REAL RA(40),XA(40)
CHARACTER* 1 NAME( 40)
COMPLEX* 16 ELEMNT( 200)
CHARACTER* 3 RRER( 200) ,BLANK
DATA BLANK/' '
REAL A(2),V(2)
COMMON/COMMOI/ M,MM,IM,IMI
COMMON/COMMO2/ U
COMMON/COMM3A/ BR R

COMMON/COMMO6/ OSS,TERM ~ .

COMMON/ COMM6A/ NAME
COMMON/COMMO8/ RA,XA,F,SIZE
COMMON/COMMO9/ T
COMMON/COMM2/ RER,RERR, IMR
COMMON/COMM13/ NEVEN,N1L,N2L,LSEED
COMMON/COMMI6/ ELEMNT
IF (L.EQ.O) GOTO 200
WRITE(4,501) NAME(OSS(L)),BR(T(1)) ,BR(T(2)),BR(T(3)),BR(T(4))

501 FORMAT('+',91X,AI,19X,I3,3X,I3,3K,13,3X,I3)
WRITE(4,510) RA(OSS(L)),XA(OSS(L))

510 FORMAT(5X,'RADIATION LOADING: REAL = ,E12.4,5X,'IMAGINARY =',El

12.4//)
RETURN0

C DETERMINE THE MEANS AND VARIANCES OF ALL THE ELEMENTS IN THE ARRAY.
200 A(1)=O.0

A(2)=O.O
V(1)=0.O

N=0
DO 10 JJ=1,M
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IF (U(JJ,2).NE.-I) GOTO 10
AC I)=DREAL( ELEMNT( i) )+A( 1)
A(2)=DIMAG(ELEMNT(JJ) )+A( 2)
N=N+1

10 CONTINUE
A( 1)=A( 1)/FLOAT(N)
AC 2)=A(2)/FLOAT(N)
DO 20 JJ=L ,M
IF (U(JJ,2).NE.-l) GOTO 20
V(1)=(DREAL(ELEMNT(JJ))-A( 1))**2+V( 1)
V(2)=(DIMAG(ELEMNT(JJ))-A(2) )**2+V(2)

20 CONTINUE
V(1)=SQRT(V( 1)/FLOAT(N-1)) ~p~
V(2)=SQRT(V(2)/FLOAT(N-1))
WRITE(4,502) 100.*A(1),A(2)

502 FORMAT(5X,'ARRAY AMPLITUDE MEAN = ,F12.8,': ARRAY PHASE MEAN =

1' ,F12.8)
WRITE(4,503) 100.*V(1),V(2)

503 FORMAT(5X,'AMPLITUDE VARIANCE = ',Fl2.8,': PHASE VARIANCE =

1' ,12.8)
C THE ARRAY RRER IS USED TO PRINT A M4AP OF THE ASSIGNED NUMBERS
C OF EACH SELECTED ELEMENT IN THE POSITION THAT IT OCCUPIES IN
C THE ARRAY.%

DO 36 JJ=1,MM %

WRITE(RRER(JJ) ,505) BLANK

36 IMR(JJ)=JJ
N=O
IF(NEVEN.EQ. 1) THEN

N= 1
WRITE(RRER(1),504) RER~i)

ENDIF
NI=1+N
DO 40 LL=1+N,IM
DO 50 KK=1+N,IM1
IF (OSS(KK).EQ.IMR(LL)) THEN
WRITE(RRER(Nl) ,504) RER(LL)
WRITE(RRER(N4-IM) ,504) RER(LL+IM)
WRITE(RRER(N1+2*IM) ,504) RER(LL+2*IM)a,'
WRITE(RRER(N1+3*IM) ,504) RER(LL+3*IM)

504 FORMAT(I3)
NI=Nl+l
GOTO 40

END IF .~

50 CONTINUE
WRITE(RRLER(NI),505) BLANK
WRITE(RRER(N1+IM),505) BLANK

WRITE(RER(Nl+2IM),50. BLN

WRITE(RRER(NI+2*IM) ,505) BLANK

505 FORI{AT(A)

40 CONTINUE
C THIS ROUTINE INITIALIZES AN ARMAY, NN, TO BE USED TO PRINT A MAP OF

p ] Z

VS~0 N %% *- *:**NNN
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C THE ELEMENT NUMBERS REPRESENTING THEIR POSITION IN THE ARRAY.
C THE SAME ROUTINE IS FOUND IN THE KENDXNAL SUBROUTINE OF THE NEARPRES
C PROGRAM.

LL= I
IF(NEVEN. NE. 1) THEN

C THIS BRANCH INITIALIZES NN FOR AN EVEN ARRAY.
NLI=2*IM
NL2=IM
DO 110 KK=1,N2L
DO 120 JJ=1,N1L
I1=JJ-1
NN(LL)=IMR(NLI11)
LL=LL+1

120 CONTINUE
NLI=NL1-NlL
DO 130 JJ=N1L,1,-l
I1=JJ-1
NN(LL)=IMR(NL2-I1)
LL=LL+l

130 CONTINUE
NL2=,4L2-N1L

110 CONTINUE
NL1=2*IM+1
NL2=3*IM+1
DO 140 KK=1,N2L
DO 150 JJ=NIL,1,-1
I1=JJ-1
NN(LL)=IMR(NL1+I1)
LL=LL+ 1

150 CONTINUE
NL1=NL1+N1L
DO 160 JJ=1,N2L
Ii =JJ- 1
NN(LL)=IMR(NL2+Il)
LL=LL+1

160 CONTINUE
NL2=NL2+N1L

140 CONTINUE
ELSE

C THIS BRANCH INITIALIZES NN FOR AN ODD ARRAY, (AN ARRAY WITH %. 'k

C AN ELEMENT AT THE CENTER.)
LL= 1
NL1=2*IM+l
NL2=IM+2-NI1L
DO 117 KK=1,NIL 0
DO 127 JJ=1,N1L*N2L,N1L
I1-JJ-1

NN(LL)=EMR(NLI-I1) ~jj
NLI=NLI-1
DO 137 JJ=1.,NlL
11=.JJ- I

DQ u
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NN(LL)=IMR(NL2+11)
137 LL=LL-1

NL2=NL2-N iL 0I 117 CONTINUJLE
NL1=3*IM.-(N2L-1 )*N1L+1
DO 147 JJ=1,N1L
I1=JJ-1
NN(LL)=IMR(NL1-11)

147 LL=LL+l
NL1=NL1+NL
NN(LL)=IMR( 1)
LL=LL+ 1
DO 157 JJ=1,N1L
Ii =JJ- I
NN(LL)=IMR( NL2-FLI)

157 LL=LL+1
NL2=4* IM+2-NIL*N2L

DO 167 KK=1,N1L
DO 177 JJ=1,NlL
I1=JJ-1
NN(LL)=IMR(NL1-I1)

177 LL=LL+1
NL1=NL1+NlL
DO 187 JJ=1,NlL*N2L,NIL
I1=JJ-1
NN(LL)=IMR(NL2+Il)

187 LL=LL+1
NL2=NL2+1

167 CONTINUE
ENDIF

C THIS STATEMENT DETERMINES WHETHER THE MAP IS TO BE PRINTED
C ON A NEW PAGE, BASED ON THE SIZE OF THE ARRAY.

IF(M.L.E.36) THEN
WRITE(4 , S0)

506 FORMAT('O'/1O',35X,'PLACEMFNT OF ELEMENTS IN THE ARRAY.'/'O')
ELSE

WRITE(4,509)
509 FORMAT('1',35X,'PLACEMENT OF ELEMENTS IN THE ARRAY.'/'O')

END IF 0
DO 197 KK=1,M,NlL+N2L

* WRITE(4 ,507)
* WRITE(4,508) (RRER(NN(LL)),LL=KK,KK+N2L-N1L-1)

WRITE(4,507)
507 FORKAT(1X)
508 FORMAT(35X,12(A3,3X))
197 CONTINUE

RETURN
END
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LISTING OF ARRAY RESPONSE PROGRAM 3

C NEARPRES*

C DIRECTIONAL BEAM PATTERN MAPPING PROGRAM *

C WRITTEN BY KING W. WIEMANN

DIMENSION PHI(50),IDEG( 50),THETA(200),AMPL(50),PHASE(50) .1.

DIMENSION SAMP(50) ,AAMP(50),NAMP(50)
CHARACTER*I JAMP(50), ICOLON, IBLANK
COMMON/COMMOl/ X(150),Y(150),ELEMNT(150),SHADE(150),AK
COMMON/COMM02/ ITER, NREPET, NPRINT, K
COMMON/COMM03/ THETA1,THETA2,DELTHE,PHII,PHI2,DELPHI
COMMON/COMM04/ DlD2,DELD
COMMON/COMM05/ R

COMMON/COMM06/ D
COMMON/COMM07/ M
COMMON/COMMI6/ NSOURC
COMPLEX ELEMNT

DATA ICOLON/':'/,IBLANK/' 'iL -- 0
NCOUNT = 0

C READ) TASK INDEX K, AND CALL THE APPROPRIATE SUBROUTINE.
READ(3,l0) NSOURC,K,NTYPE S

10 FORMAT(313)
GOTO(1,2,3,4,5) K

I CALL ROUTE1(L,&20)
2 CALL ROUTE2(L,&20)
3 CALL ROUTE3(L,&20)
4 CALL ROUTE4(L,&20)

5 CALL ROUTE5(L,&20)
C IF THE TASK CHOSEN IS TO BE DONE ITERATIVELY FOR NEW PARAMETERS
C DATAIN IS CALLED FOR EACH SUCCESSIVE ITERATION.

C AFTER EACH MAP IS PRINTED, CONTROL RETURNS TO LINE 11.

11 CALL DATAIN(L)
IF(NPRINT.EQ.1) CALL PRINT

C INITIALIZING THE THETA AND PHI VALUES.
C FOR K = 1,2,3 THETA IS HELD CONSTANT WHILE PHI CYCLES.
C FOR K = 4,5, PHI IS HELD CONSTANT WHILE THETA CYCLES.

C
C DETERMINE THE RESPONSE ON THE MAIN BEAM. (THETA = O.O;PHI 0.0)
C
20 IF(NTYPE.NE.1) GOTO 12

CALL PRESS (0.0,0.0,AMPLI,PHASEI,DNORM,D) '

SAMP1 = AMPLI/DNORM
IF (ABS(SAMP1).GT.l.0592E-5) THEN

AAMPI = 20.0*ALOGIO(SAMPI)
ELSE 0

AAMPI = 99.0
ENDIF

Z=AAMP1
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C SET UP THE PHI AND THETA VALUES FOR TASKS 1, 2, OR 3.
12 IF(K.LE.3) THEN ' '

II = (PHI2 - PHII)/DELPHI +1.0 h

IF (II.GT.37) II = 37
JJ = (THETA2 - THETA1)/DELTHE +1.0
IF (JJ.GT.181) JJ = 181
DO 25 I = 1,II
PHI(l) = PHIL + (I-1)*DELPHI

25 IDEG(1) = PHI(l)
DO 30 J = 1,JJ

30 THETA(J) = THETAI + (J-I)*DELTHE
C PRINT THE HORIZONTAL SCALE FOR THE MAP.

WRITE(4,35)
35 FORMAT('I',40X,'MAP OF ARRAY OUTPUT'/)

WRITE (4,40) (IDEG(1),I=1,II,2)
40 FORMAT(5X,'THETA',55X,'PHI (DEGREES)'/11X,18(14,2X),14)

ELSE
C SET UP THE THETA AND PHI VALUES FOR TASKS 4 AND 5.
50 II = (THETA2 - THETA1)/DELTHE + 1.0

IF(II.GT.37) II = 37
JJ = (PHT2 - PHII)/DELPHI + 1.0
IF(JJ.GT.181) JJ = 181
DO 55 1 = 1,II
THETA(I) = THETAl + (I-1)*DELTHE V..-

55 IDEG(I) = THETA(1)
C PRINT THE HORIZONTAL SCALE FOR THE MAP.

WRITE(4,35)
WRITE (4,45) (IDEG(I),I=I,II,2)

45 FORMAT(5X,'PHI',55X,'THETA (DEGREES)'/i1X,18(14,2X),14)
DO 60 J =1,JJ

60 PHI(J) = PHIl + (J-1)*DELPHI
ENDIF

C IF A HEIGHT SPECTRUM IS THE TASK, THETA AND PHI WILL CYCLE WHILE S
C THE VALUE OF D IS HELD CONSTANT.
65 IF(K.NE.5) GOTO 67
66 D=Dl
67 DO 80 J = 1,JJ

DO 70 i = 1,ii
IF(K.GT.3) THEN •

C DEPENDING ON K, DIFFERENT ANGLE PARAMETERS ARE SENT TO PRESS.
CALL PRESS (THETA(1),PHI(J),AMPL(1),PHASE(I),DNORM,D)

ELSE
CALL PRESS (THETA(J),PHI(I),AMPL(I),PHASE(I),DNORM,D) '...

ENDIF
74 SAMP(I) = AMPL(I)/DNORM •

IF (ABS(SAMP(1)).GT.I.0592E-5) THEN
AAMP(I) -20.0*ALOG10(SAMP(I))

ELSE
AAMP(I) = 99.0

ENDIF
C SUBRACT THE SIDE LOBE RESPONSE FROM THE MAIN BEAM RESPONSE. S

IF(NTYPE.NE.1) GOTO 78AAMP(I) =Z+AAMP(1)-'- : .

IF(AAMP(1).GT.99.5) AAMP(I)=99.0

%. -%
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PHASE(I)=PHASE1-PHASE( I) ,'

78 NAMP(I) = INT(AAMP(I) + SIGN (0.5,AAMP(I)))
JAMP(!) = IBLANK •
IF(PASE(I).GE.90.0.AND.PHASE(1).LE.270.0) JAMP(I) = ICOLON
IF(PHASE(1).LE.-90.O) JAMP(1) = ICOLON

70 CONTINUE
IF(K.GT.3) THEN
WRITE(4,84) PHI(J),(NAMP(I),JAMP(I),I=I,II)

ELSE _
WRITE (4,84) THETA(J),(NAMP(I),JAMP(I),I=I,II)

END IF
84 FORMAT (5X,F6.2,2X,37(12,AI))
80 CONTINUE .

IF(K.NE.5) GOTO 99
D = DI + DELD 0
IF(D.GT.D2) GOTO 99 o
GOTO 67 'N-

99 WRITE (4,110)
110 FORMAT ('O',5X,'THETA IS THE ANGLE MEASURED FROM THE Z-AXIS (ANGLE

1 OF INCIDENCE)'/5X,'PHI IS THE ANGLE MEASURED FROM THE X-AXIS (NO
2LL PLANE)'/5X,'ALL NUMBERS ARE NEGATIVE DECIBELS'/IX,'**NOTE** LAB S
3ELLING OF THE HORIZONTAL SCALE IS FOR ALTERNATE COLUMNS AND IS TRU
4NCATED TO INTEGER MODE'/)
GOTO(101,102,103,104,105) K

101 WRITE(4,130) K -,
130 FORMAT(5X,'K='IX,12,2X,'THIS IS A MAP OF THE RESPONSE OF THE ARRA

IY TO A SIGNAL INCIDENT AT ANGLES PHI AND THETA'!!)
GOTO 136

102 WRITE(4,131) K,R
131 FORMAT(5X,'K='IX,12,2X,'THIS IS A MAP OF THE PRESSURE FIELD ON A H

IEMISHPERICAL SURFACE'/IX,'CENTERED AT THE CENTER OF THE ARRAY AT A
2 DISTANCE OF R=',IX,F8.4//)
GOTO 136

103 WRITE(4,132) K,D
132 FORMAT(5X,'K=',1X,12,2X,'THIS IS THE PRESSURE FIELD IN A PLANE PAR '

IALLEL TO THE PLANE OF THE ARRAY AT HEIGHT D=',lX,F8.4//)
GOTO 136

104 WRITE(4,133) K,D,PHIl
133 FORMAT(5X,'K=',lX,12,2X,'THIS IS THE PRESSURE FIELD AT HEIGHT D=',

IIX,F8.4,2X,'AND ALONG THE ROLL PLANE PHI=',IX,F8.4//)
GOTO 136

105 WRITE(4,134) K,PHI,DI,D2,DELD '%.v

134 FORMAT(5X,'K='lX,12,2X,'THIS IS THE PRESSURE FIELD AT ROLL PLANE P
IHI=',IX,F8.4/5X,'STARTING AT HEIGHT DI=',IX,F8.4,2X,'ENDING AT HEI
2GHT D2=',IX,F8.4,2X,'AT AN INCREMENT OF DELTA D=',1X,F8.4//) 0

C
C IF THE TASK IS TO BE REPEATED, THE COUNTER IS INCREMENTED AND THE NEW
C VALUES READ IN.
136 NCOUNT=NCOUNT+"

IF(NCOUNT.GE.ITER) GOTO 112
L=NREPET o
GOTO It

C IF THE PROGRAM IS FINISHED, A NEW SET OF ARRAY PARAMETERS MAY BE

k°f

S:5=. .......

{, %t, %' m :'Jll'= ~l: ' 
I ' l

W , "' , ... . - - -- I. I I II I II I IIII I I '- -



136

C CHANGED AND THE PROGRAM RUN AGAIN.

C HOWEVER, ONLY ONE PARAMETER MAY BE CHANGED AT THIS TIME.

112 READ(3,137) NAGAIN
137 FORMAT(I1)

IF(NAGAIN.NE.1) GOTO 113 ,
READ(3,138) ITER,NREPET,NPRINT 

..'pJ

138 FORMAT(313)
NCOUNT=O

L=NREPET 0

GOTO 11
113 STOP

END - - -

SUBROUTINE PRESS(THETAP,PHIP,AMPLP,PHASEP,DNOR M,D)

C WRITTEN BY MARK SCHAFER * -
C EXPANDED BY KING W. WIEMANN • -
C** * * * * * ** * *****

COMMON/COMMO/ X(150),Y(150),ELEMNT(150),SHADE(150),AK
COMMON/COMM02/ ITER, NREPET, NPRINT, K %.

COMMON/COMM05/ R

COMMON/COMM07/ M
COMMON/COMM08/ RK
DIMENSION ANGLE(150) ,A(150)
REAL*8 U,SUMR,SUMI,DCOS,DSIN,DATAN2,DAMPL

COMPLEX ELEMNT
C CONSTANTS TO CONVERT DEGREES TO RADIANS AND VICE VERSA.

DATA D2RAD/1.74532925 E-02/ -.
C INITIALIZE THE SUMS.

SUMI =0.0

SUMR = SUMI
UCOS = SIN(THETAP*D2RAD)*COS(PHIP*D2RAD)
USIN = SIN(THETAP*D2RAD)*SIN(PHIP*D2RAD)

C SUM THE RESPONSE OVER ALL THE ELEMENTS.
C A(J) IS THE ACTUAL SHADING OF EACH ELEMENT. IT IS THE PRODUCT OF
C THE IDEAL SHADING FOR THE DESIRED ELEMENT (A FUNCTION OF POSITION), ,.
C AND THE ELEMENTS AMPLITUDE RESPONSE. -' .-

DNORM =0

DO 10 J = 1,M
A(J) = REAL(ELEMNT(J))*SHADE(J)
DNORM = DNORM + SHADE(J)

ANGLE(J) = AIMAG(ELEMNT(J))
S=X(J)*UCOS+Y(J)*USIN
U=DBLE(AK*S+ANGLE( J)*D2RAD)

C DEPENDING ON THE TASK CHOSEN, THE RESPONSE IS COMPUTED DIFFERENTLY. 0
C FOR THE PRESSURE FIELD, THERE IS A PHASE FACTOR INVOLVING THE DISTANCE
C R FROM THE CENTER OF THE ARRAY. FOR K=1, RI=1 (i.e. DIVISION BY %
C UNITY).

GOTO(5,4) K % %
R D/COS(THETAP)

:®r
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4 Ri =R- S
GOTO 6

5 RI = 1.0
6 DAMPL =DBLE(A(J)) s

SUMR =SUMR + DCOS(U)*DAMPL/R1 d

SUMI =SUMI + DSIN(U)*DAMPL/Rl
10 CONTINUE

C TAKE THE MAGNITUDE OF THE AIMPLITUDE AND CONVERT THE PHASE TO DEGREES.
AMPLP = SNGL(SUMR*SUMR + SIMI*SUMI)
AMPLP =SQRT(AMPLP) ,

PHASEP = SNGL(DATAN2(SUMI,SUr4R))/D2RAD
IF(K.NE.1) PHASEP = PHASEP-AK*R/D2R.AD .' J

RETURN
END

SUBROUTINE ROUTE1(L,*)
COMMON/COMMO2/ ITER, NREPET,NPRINT,K
GOMMON/GOMMO3/ THETAI,THETA2,DELTHE,PHIIPHI2,DELPHI
GOMMON/COM4/ NPOOL,MM
READ(3, 10) THETA1,THETA2,DELTHE
READ(3,1O) PHII.,PHI2,DELPHI
READ(3,15) NPOOL 7~

10 FORMAT(3F8.4) -

15 FORMAT(15)
IF(NPOOL.EQ.1) READ(3,15) MM
CALL DATAIN(L)
IF(NPRINT.EQ.1) CALL PRINT
RETURN 1
END

SUBROUTINE ROUTE2(L,*)
COMMON/COMMO2/ ITER,NREPET,NPRINT,K
COHMON/COMMO3/ THETAI,THETA2,DELTHE,PHI1,PHI2,DELPHI
COMMON/COKMO5/ R
READ(3, 10) THETAI,THETA2,DELTHE
READ(3,1O) PHII,PHI2,DELPHI
READ(3,15) R

10 FORMAT(3F8.4)
15 FORMAT(F8.4)

CALL DATAIN(L)
IF(NPRINT.EQ.1) CALL PRINT
RETURN 1 - p

END

SUBROUTINE ROUTE3(L,*)
COMMON/GOMMO2/ ITER,NREPET,NPRINT,K
COMMON/COKMO3/ THETAI,THETA2,DELTHE,PHII,PHI2,DELPHI
COMMON/COMMO6/ D
READ( 3,10) TI{ETA1 ,THETA2 ,DELTHE
READ(3,1O) PHI1,PHI2,DELPHI
READ(3,15) D

10 FORMAT(3F8.4)
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15 FORMAT(F8.4)
CALL DATAIN(L)
IF(NPRINT.EQ.1) CALL PRINT .-

RETURN 1 0

END%

SUBROUTINE ROUTE4(L ,*)
COMMON/COMMO2/ ITER, NREPET, NPRINT ,K
COMMON/COMMO3/ THETAI,THETA2,DELTHE,PHII ,PHI2,DELPHI
COMMON/COMMO6/ D
READ(3, 10) THETA1,THETA2,DELTHE
READ(3,15) PHI
READ(3,15) D * .

10 FORMAT(3F8.4)
15 FORMAT(F8.4)

PHIl = -PHI
PH12 = PHI
DELPHI = 2*PHI
CALL DATAIN(L)
IF(NPRINT.EQ.1) CALL PRINT
RETURN I
END -

SUBROUTINE ROUTE5(L,*)
COMMON/COMMO2/ ITER,NREPET,NPRINT,K
COMMON/COMMO3/ THETAl ,THETA2,DELTHE,PHIL ,PHI2,DELPHI
COMMON/COMMO4/ Dl ,D2 ,DELD
READ(3, 10) THETA1,THETA2,DELTHE
READ(3,15) PHI
READ(3,1O) D1,D2,DELD

10 FORMAT(3F8.4)
15 FORMAT(F8.4)

PHIl = -PHI
PH12 = PHI ' -

DELPHI = 2*PHI
CALL DATAIN(L)
IF(NPRINT.EQ.1) CALL PRINT
RETURN 1
END

SUBROUTINE PRINT
C ROUTINE TO PRINT OUT THE ARRAY PARAMETERS FOR THE CURRENT MAP.

COMMON/COM01I/ X(150),Y(150),ELEMNT(150),SHADE(150),AK
COKMON/COKMO2/ ITER,NREPET,NPRINT,K
CORMON/COMM3/ THETA,THETA2,DELTHE,PHI1,PHI2,DELPHI
COMMON/COKMO4/ Dl, D2 ,DELD
COMMON/COMMOS! R *f

COMMON/COMMO6/ D
COMMON/COMMO7/ M
COMMON/COMMO9/ DOLAM,WAVE
COMMON/COMM15/ NEVEN,NROUTE,IM,NlL,N2L
COMPLEX ELEMNT
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DIMENSION NN(150),IMR(150),AMP(150),PHASE(150)
DATA L/O/
L=L+-
DO 1 KK=I,M 

-

AMP(KK)=REAL(ELEMNT(KK)) .

I PHASE(KK)=AIMAG(ELEMNT(KK)) 
,

IF(NROUTE.EQ.1) THEN
IF(L.GT.1) GOTO 153
DO 4 KK=I,M

4 IMR(KK)=KK
LL="

C THIS BLOCK INITIALIZES AN ARRAY, NN, WHICH ALLOWS THE PRINTING OF
C ELEMENT TOLERANCES IN THE OUTPUT FILE SO THAT IT MATCHES THEIR
C RESPECTIVE PLACEMENTS IN THE ARRAY.

IF(NEVEN.NE. 1) THEN
C THIS BRANCH INITIALIZES NN FOR AN EVEN ARRAY.

NLL=2*IM .-

NL2=IM
DO 10 KK=I,N2L
DO 20 JJ=I,NIL
II=JJ-1
NN(LL)=IMR(NL-II) S
LL=LL+I ,,.fa

20 CONTINUE
NL1=NLI-N1L
DO 30 JJ=NIL,1,-1
II=JJ-1
NN(LL) =IMR(NL2-II)
LL=LL+I 1,.

30 CONTINUE
NL2=NL2-N1L

10 CONTINUE de
NL1=2*IM+1
NL2=3*IM+ 1
DO 40 KK=1,N2L
DO 50 JJ=NIL,1,-
I I=JJ-1 .o

NN(LL)=IMR(NLI+II)
LL=LL+ 1

50 CONTINUE
NLL=NLI+NIL

DO 60 JJ=1,N2L
II=JJ-1
NN(LL)=IMR(NL2+II)-
LL=LL+l

60 CONTINUE *. a.

NL2=NL2+NIL
40 CONTINUE

ELSE
C THIS BRANCH INITIALIZES NN FOR AN ODD ARRAY, ( AN ARRAY WITH
C AN ELEMENT AT THE CENTER.)

LL=I

a.' .AN

N % %
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NLI=2*IM+l
NL2=IM+2-NlL--
DO 17 KK=1,NIL P
DO 27 JJ=1,N1L*N2L,NlL
II.=JJ- I

27 NN(LL)=IMR(NL1-11)
27 LL=LL+1

NLI =NL 1-i
DO 37 JJ=1,NlL
II=.JJ-1
NN(LL)=IMR(NL2+II)

37 LL=LL+1
NL2=NL2-N1L

17 CONTINUE
NL1=3*IM-(N2L-1)*N1L+l
DO 47 JJ=1,N1L 0
II=JJ-1
NN(LL)=IMR(NLI-II)

47 LL=LL+l
NLI=NLL+N1L
NN(LL)=IMR( 1)
LL=LL+ I
DO 57 JJ=1,NIL
II=JJ-1
NN(LL)=IMR(NL2+II)

57 LL=LL-1
NL2=4* IM+2-N 1L*N2L
DO 67 KK=I,NIL
DO 77 JJ=1,NLN1
II=JJ-1

77 LL=LL+l
NL1=NLI+N1L

DO 87 JJ=1,N1L*N2L,N1L
II=JJ-1
NN(LL)=IMR(NL2+II)

87 LL=LL+1
NL2=NL2+1

67 CONTINUE
ENDIF0

153 WRITE(4,106)
106 FORMAT('1',4X,'PLACEMENT OF ELEM4ENT TOLERANCES IN THE ARRAY.')

II=1
DO 97 KK=1,M,NlL+N2L
WRITE(4, 108)
WRITE(4,109) (AMP(NN(LL)),LL=KK,KK+N2L+NIL-1)
WRITE(4, 108)
WRITE(4, 109) (PHASE(NN(LL)),LL=KK,KK+N2L+N1L-1)
WRITE(4, 108)

108 FORMAT(IX)
109 FORMAT(5X,12(F9.5,2X))

k% pool
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97 CONTINUE 14

CALL KENDANAL
ELSE

C THIS WILL PRINT OUT THE ARRAY PARAMETERS FOR NON-SYMETRIC ARRAYS.
118 WRITE(4,245)
245 FORMAT('ISHADING, POSITION(X,Y), AND TOLERANCES (AMPL. AND PHASE

1)'/IX,'FOR EACH ELEMENT')
DO 279 J=1,M N

WRITE(4,250) SHADE(J), X(J), Y(J), ELEMNT(J)
250 FORMAT(iX,5(F9.5,2X))
279 CONTINUE
291 ENDIF No

WRITE(4,12) DOLAM,WAVE
12 FORMAT(5X,'D OVER LAMDA =',F8.4,2X,'WAVELENGTH=',F8.4///)

C EACH TASK HAS A UNIQUE PARAMETER ASSOCIATED WITH IT. FOR EACH
C TASK, THAT PARAMETER IS PRINTED. 0

IF(K.NE.2) GOTO 21

WRITE(4,15) K,R
15 FORMAT(lX,'K = ',12,2X,'THE RADIUS IS: ',F8.4///)
21 IF(K.NE.3) GOTO 31

WRITE(4,16) K,D
16 FORMAT(IX,'K = ',12,2X,'THE DISTANCE IS: ',F8.4///)

31 IF(K.NE.4) GOTO 41
WRITE(4,25) K,PHI2,D .. e .b

25 FORMAT(IX,'K = ',12,2X,'THE ROLL PLANE IS: ',F8.4,2X,'THE DISTANCE
1 IS : ',F8.4)

41 IF(K.NE.5) GOTO 51
WRITE(4,35) K,PH12,DI,D2,DELD

35 FORMAT(1X,'K = ',12,2X,'THE ROLL PLANE IS: ',F8.4/1X,'THE INITIAL
LAND FINAL DISTANCES ARE: ',2(FB.4,2X),'AND THE INCREMENT IS: ',F8.
24)

51 RETURN
END

SUBROUTINE KENDANAL
C ROUTINE WHICH DETERMINES THE KENDIG TERMS, AND PLACES THEM IN
C THEIR RESECTIVE POSITION IN THE FIRST QUADRANT.

COMMON/COMMOI/ X(150),Y(150),ELEMNT(150),SHADE(150),AK

COMMON/COMMO7/ M 
.

COMMON/COMM10/ IMR
COMMON/COMMi 4/ NPOOL,MM .
COMMON/COMML5/ NEVEN,NROUTE,IM,NIL,N2L
COMMON/COMMI6/ NSOURC
COMPLEX ELEMNT r% %r
DIMENSION Vl(40),V2(40),V3(40),V4(40),V5(40),V6(40),V7(40)
DIMENSION V8(40),AMP(150),PHASE(150),NN(40),IMR(150) ..
DATA D2RAD/1.74532925 E-02/ -

DO 10 II=1,M
AMP(II)=REAL(ELEMNT(II))
PHASE(II)=AIMAG(ELEMNT(II) )*D2RAD"

10 CONTINUE
KKI=IM

oo~. ... .. .. ~
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KK2=2*IM
1(K3=3*IM
N=O .
IF(NEVEN.EQ.1) N=1
DO 20 KK=1,IM+N 

"o

K1=KK+KK1
K2=KK+KK2
K3=KK+KK3
VI1=AMP(KK)*PHASE(KK)
V22=AMP(KI )*PHASE(Kl)e
V33=AMP(K2)*PHASE(K2)
V44=AMP( K3 )*PHASE( K3)
Vl(KK)=AMP(KK)+AMP(K1 )-iAMP(K2)+AMP(K3)
V2(KK)=AMP(KI )-iAM\P( K3)-AMP(KK)-AMP(K2)
V3(KK)=V33-V1 1+V44-V22
V4(KK)=V33-V1 1-V44+V22
V5(KK)=AMP(KK)-AMP(K2)+AMP(K1 )-AMP(K3)
V6(KK)=AMP(KK)-AMP(K2)+AMP(K3)-AM\P(Kl)
V7(KK)=VI I+V22+V33+V44
V8(KK)=V1 1+V33-V22-V44

20 CONTINUE

C THE ARRAY NN CONTROLS THE PLACEMENT OF THE KENDIG TERMS SIMILAR TO
C THE WAY NN WORKS IN THE PRINT SUBROUTINE.

IF(NEVEN.NE.1) THEN
C INTITIALIZE NN FOR AN EVEN ARRAY.

LL= 1
NLI=N2L -N
NL2=1
DO 40 KK=1,N2L. J.

DO 30 II=NL1,NL2,-1
JJ=II-1
NN( LL) =IM-JJ
LL=LL+ 1

30 CONTINUE
NL1=N1+N2

NL2=NL1+N2L

40 CONTINUE
ELSE V.

C INITIALIZE NN FOR AN ODD ARRAY.*.A
LL= 1
NT= 1
DO 60 JJ=1,N2L
DO 70 II=NT+N2L-1,NT,-l
NN(LL)=IM+2-II
LL=-LL+ I

70 CONTINUE
NT=NT+NIL

60 CONTINUEIl
DO 80 II=1,NIL%
NN( I+( I-i )*N2L)..O

80 CONTINUE
ENDI F

%,~M
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NL1=1
NL2=N2L 

i

WRITE(4, 109)
109 FQRMAT(Il',15X,'KEN4DIG TERMS'!) N o

DO 50 II=1,N2L
WRITE(4, 104)
IF(NEVEN.EQ.1.AND.NN(NL1).EQ.0) THEN .I te4

WRITE(4,106) (VI(NN(JJ)),V2(NN(Jj)),JJ=NL1+1,NL2)
4RITE(4,106) (V3(NN(JJ)),V4(NN(Jj)),JJ=NLI+1,NL2)
WRITE(4,106) (V5(NN(JJ)),V6(NN(JJ)),JJ=NL1+1,NL2)
WRITE(4,106) (V7(NN(JJ)),V8(NN(JJ)),JJ=NLL+1,NL2)

ELSE
WRITE(4,105) (V1(NN(JJ)),V2(NN(JJ)),JJ=NL1,NL2)
WRITE(4,105) (V3(NN(JJ)),V4(NN(JJ)),JJ='NLI,NL2)
WRITE(4,105) (V5(NN(JJ)),V6(NN(JJ)),JJ=NL1,NL2)
WRITE(4,105) (V7(NN(JJ)),VB(NN(JJ)),JJ=NL1,NL2) -

ENDIF
WRITE(4, 104)
NLI=NLI+N2L
NL2=NL2+N2L

50 CONTINUE
104 FORKAT(1X)0
105 FORMAT(15X,5(2X,F8.5,2X,F8.5,2X))
106 FORM4AT(37X,4(2X,F8.5,2X,F8.5,2X))

RETURN
END

SUBROUTINE DATAIN( L)0
C SUBROUTINE TO INPUT DATA FOR NEARPRES.

COMMONICOMMOl/ X(150),Y(150),ELEMNT(150),SHADE(150),AK
COMMON/ CoMMO 21 ITER, NREPET, NPRINT ,K
COMMON/COM7/ M
COMMON/COMMO8/ RIK
COMMON/COMMO9/ DOLAM ,WAVE
COMMON/COMMi 0/ IMR
COMMON/CoMM14/ NPOOL,MM4
COMMON/COMMI5/ NEVEN,NROUTE,IM,N1L,N2L
COMMON/COMM16/ NSOURC
COMPLEX ELEMNT0
DIMENSION IMR(150) .d ~
PI = 4.0*DATAN(1.ODOO)

C THIS PASSES CONTROL TO THE SYMMETRIC LOOP ONLY IF DATAIN IS CALLED
C FROM THE MAIN PROGRAM RATHER THAN ONE OF THE ROUTE SUBROUTINES.

IF(NROUTE.EQ.1) GOTO 500
GOTO (1,2,3,4) L
READ(3,95) ITER,NREPET,NROUTE,M,NPRINT

95 FORMAT(513)
IJ=M

CIF(NSOURC.EQ.1) IJ=MM
CNROUTE SPECIFIES LOOP 1 OR LOOP 2

0
C 7.
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C LOOP ONE; A NONSYMMETRIC ARRAY
C

C READ IN THE SHADING COEFFICIENTS
I DO 10 J=I,M

READ(3,105) SHADE(J)
105 FORMAT(F9.6)
10 CONTINUE

IF (L.GT.0) GOTO 50
C READ IN THE ELEMENT TOLERANCES
2 IF(NSOURC.EQ.1) THEN

DO 93 J=1,IJ
READ(3,94) IMR(J) -

94 FORMAT(14)A
93 CONTINUE

ELSE 0
DO 96 JJ=I,M
IMR(JJ)=JJ

96 CONTINUE
ENDIF
DO 15 JJ=1,IJ
RAD (J,liU) ELEMNT(IMR(JJ)) S

110 FORMAT(2F12.6)
15 CONTINUE

IF (L.GT.0) GOTO 50
C READ IN THE ELEMENT POSITIONS

3 DO 20 J=I,M -v,"
READ (3,115) X(J), Y(J) 0

115 FORMAT(2F7.3)
20 CONTINUE

IF (L.GT.0) GOTO 50
C READ IN THE WAVELENGTH AND CONVERT IT TO THE WAVE NUMBER AK

4 READ (3,120) WAVE
120 FORMAT(F9.4)

AK=2*PI/WAVE
DOLAM=X(2)-X( 1)/WAVE .,

50 RETURN
C
C LOOP TWO; A SYMMETRIC ARRAY.
C 0
500 GOTO(401,402,403,404) L

READ(3,405) IM,NEVEN,NIL,N2L
405 FORMAT(4I5)
C INPUT THE SHADING COEFFICIENTS. ff..,
C IF THE ARRAY IS 'ODD', NEVEN=I. ('ODD' ARRAY MEANS THERE IS A
C CENTER ELEMENT, AT X=O,Y=O). %
401 IF(NEVEN.EQ.1) THEN P

READ(3,415) SHADE(1) %.%
DO 411 J=2,IM+l
READ(3,415) SHADE(J)

C ASSIGN EACH POSITION IN THE ARRAY WITH ITS PROPER SHADING.
SHADE(J+IM)=SHADE(J) ]
SHADE(J+2*IM)=SHADE(J) N



145

SHADE(J+3*IM)=SHADE(J)
411 CONTINUE

ELSE
C INPUT THE VALUES FOR AN EVEN ARRAY.

406 DO 410 J=1,IM
READ(3,415) SHADE(J)

C ASSIGN EACH POSITION IN THE ARRAY WITH ITS PROPER SHADING.

SHADE(J+IM)=SHADE(J)
SHADE(J+(2*IM) )=SHADE(J)
SHADE(J+(3*IM) )=SHADE(J)

415 FORMAT(F9.6)
410 CONTINUE

ENDIF
IF (L.GT.0) GOTO 600

C READ IN THE ELEMENT TOLERANCES.
402 IF(NSOURC.EQ.1) THEN

DO 493 JJ=1,IJ

READ(3,494) IMR(JJ)
494 FORMAT(14)
493 CONTINU6

ELSE
492 DO 496 JJ=1,IJ

IMR(JJ)=JJ
496 CONTINUE

ENDIF
DO 420 JJ=1,IJ
READ (3,110) ELEMNT(IMR(JJ))

420 CONTINUE
IF (L.GT.0) GOTO 600

C READ IN THE ELEMENT POSITIONS.
C IF THE ARRAY IS ODD, NEVEN=. (ODD ARRAY MEANS THERE IS A CENTER

C ELEMENT).
403 TF(NEVEN.EQ.1) THEN

READ(3,433) X(l),Y(1)
DO 438 J=2,1M+1
READ(3,433) X(J),Y(J)

C ASSIGN EACH QUADRANT WITH THE PROPER SIGN VALUES FOR X AND Y.

Y(J+IM)=X(J)
X(J+IM)=-Y(J)

X(J+2*IM)=-X(J)
Y(J+2*IM)=-Y(J) .-

X(J+3*IM)=Y(J)
Y(J+3*IM)=-X(J)

438 CONTINUE -.

ELSE 0

C INPUT THE POSITIONS FOR AN EVEN ARRAY.
DO 430 J=IIM
READ(3,433) X(J),Y(J)

*C ASSIGN EACH QUADRANT WITH THE PROPER SIGN VALUES FOR X AND Y.

X(J+IM)=-X(J) 
Z.- -

X(J+(2*IN) )=-X(J)
X(J+(3*IM) )=X(J) A

'
%'
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Y(J+IM)=Y(J)
Y(J+(2*IM) )=-Y(J)
Y(J+(3*IM) )=-Y(J)

433 FORMAT(2F7.3)
430 CONTINUE

ENDIF
308 IF (L.GT.O) GOTO 600
C READ IN THE WAVELENGTH WAVE AND SPECIFY THE WAVENUNBER AK.
404 READ(3,435) WAVE

READ(3,435) DOLAM
435 FORMAT(FIO.6)

AK=2*PI*DOLAM4
RK=2*PI /WAVE

600 RETURN
END

01



147

BIBLIOGRAPHY

1. Kendig, P. M., "A Method of Selecting Element Positions in a
Hydrophone Array to reduce Minor Lobes," J. of Acoust. .

Soc. Am., 50, 310-313, 1971.

2. Schafer, M. E., "The Prediction of Transducer Element
Performance From In-Air Measurements," Master of Science 1

Thesis in Acoustics, The Pennsylvania State University,
May 1982.

3. Morse, P. M., and Ingard, K. U., Theoretical Acoustics, -

McGraw-Hill, New York, 1968, Sec. 7.4, pp 392-394.

4. Arase, E. M., "Mutual Radiation Impedance of Square and
Rectangular Pistons in a Rigid Infinite Baffle,"
J. Acoust. Soc. Am., 36, 1521-1525, 1964.

5. Skudrzyk, E. J., The Foundations of Acoustics, Springer-
Verlag, New York, Wien, 1971, Sec. 18.17.1, pp 368-372.

6. Thompson, W. personal communication.

7. Nicholson, T. A. J., Optimization in Industry, Aldine-
Atherton, Chicago, 1971. Chapter 9.

8. Ignizio, J. P., Linear Programming in Single and Multiple
Objective Systems, Prentice-Hall, Englewood Cliffs, N.J., 1982. -

9. Zadeh, L. A., "Making Computers Think Like People," IEEE Spectrum, . '

21(8), 26-32, 1984 (August).

10. Wilson, G. L., "Computer Optimization of Transducer Array Patterns,"
J. Acoust. Soc. Am., 59, 195-203, 1976.

11. Draus, S. M., "The Design of Acoustic Transducer Arrays Using
Goal Programming," Master of Science Thesis in Industrial ....

Engineering, The Pennsylvania State University, August 1977. .. .

12. Dolph, C. L., "A Current Distribution for Broadside Arrays which
Optimizes the Relation Between Beam Width and Side Lobe Level,"
Proc. I.R.E., 34, 335-48, 1946.

13. Albers, V. M., Underwater Acoustics Handbook, Penn State University
Press, 1960, page 174.

14. Alvord, C. H. III, "Large Scale Systems Optimization Using
Non-Linear Integer Goal Programming Methods," Ph.D. Dissertation .
in Industrial Engineering, The Pennsylvania State University,
1981.

SeS


